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Abstract

Despite the sustained popularity of Q-learning as a practical tool for policy determination,
a majority of relevant theoretical literature deals with either constant (1 = ) or polynomially
decaying (n; = nt~®) learning schedules. However, it is well known that these choices suffer
from either persistent bias or prohibitively slow convergence. In contrast, the recently
proposed linear decay to zero (LD2Z: 1, = 7(1 — t/n)) schedule has shown appreciable
empirical performance, but its theoretical and statistical properties remain largely unexplored,
especially in the Q-learning setting. We address this gap in the literature by first considering
a general class of power-law decay to zero (PD2Z-v: 1., = n(1 —t/n)”). Proceeding step-by-
step, we present a sharp non-asymptotic error bound for Q-learning with PD2Z-v schedule,
which then is used to derive a central limit theory for a new tail Polyak-Ruppert averaging
estimator. Finally, we also provide a novel time-uniform Gaussian approximation (also
known as strong invariance principle) for the partial sum process of Q-learning iterates,
which facilitates bootstrap-based inference. All our theoretical results are complemented by
extensive numerical experiments. Beyond being new theoretical and statistical contributions
to the Q-learning literature, our results definitively establish that LD2Z and in general PD2Z-v
achieve a best-of-both-worlds property: they inherit the rapid decay from initialization
(characteristic of constant step-sizes) while retaining the asymptotic convergence guarantees
(characteristic of polynomially decaying schedules). This dual advantage explains the empirical
success of LD2Z while providing practical guidelines for inference through our results.

1 Introduction

With the advent of generative Al models and its continuing ascent towards ubiquity, the use of
reinforcement learning (RL) to train multiple agents to undertake complex sequential decisions
seamlessly, has occupied a central role in modern learning theory. In that regard, Q-learning
(Watkins et al., 1989; Watkins & Dayan, 1992; Sutton & Barto, 2018; Chi et al., 2025), represents
a classical, yet practically relevant model-free approach to estimate the optimal policy of a Markov
decision process (MDP). Research on the statistical properties of the Q-learning algorithm has
been extensive; in particular, treatment of asymptotic and non-asymptotic error bounds have
ranged from techniques particular to synchronous Q-learning (Jaakkola et al., 1993; Tsitsiklis,
1994; Szepesvari, 1997; Shi et al., 2022), to the more modern lens of stochastic approximation
(SA) algorithms (Chen et al., 2020b; Qu & Wierman, 2020; Chen et al., 2021). Specifically,
these latter works cast the Q-learning algorithm as an SA targeting the Bellman equation,
and thereby, more general tools can be employed to derive finer theoretical results on these
algorithms. This direction also has been, arguably, adequately explored with central limit theory,



and functional central-limit-theorems, appearing in (Xie & Zhang, 2022; Li et al., 2023b,a; Panda
et al., 2024). A special case of Q-learning with a singleton action space, is the Temporal-difference
(TD) learning, for which Berry-Esseen theorems and subsequent Gaussian approximations and
bootstrap strategies have been discussed (Wu et al., 2024b, 2025; Samsonov et al., 2025).

A very important, but often ignored aspect in these theoretical studies is the choice of step-sizes
or learning rates. Indeed, it has become widely common in statistical inference literature to
analyze either the constant learning rates or the polynomially decaying learning rate. Such
choices are not without their own advantages; the constant learning rate enjoys experimental
evidence of a much faster convergence, however a proof similar to Li et al. (2024b) shows that
the Q-learning with constant learning rate will converge to a stationary distribution around the
optimal Q*; in other words, the asymptotic bias is non-negligible, and requires further jackknifing
to ensure convergence. On the other hand, the polynomially decaying learning rate is theoretically
attractive; the aforementioned results establishing Gaussian approximations and other inferential
results extensively use a polynomially decaying learning rate. This choice has been guided
by theory of stochastic gradient descent at least since (Ruppert, 1988; Polyak & Juditsky,
1992), however its theoretical optimality often masks its excruciatingly slow convergence, as also
observed by (Zhang & Xie, 2024). These criticisms have been echoed by the broad stochastic
optimization community, leading to a recent proposal of linearly decaying to zero (LD2Z) learning
rate 1., = (1 —t/n) (Devlin et al., 2019; Touvron et al., 2023). Despite a requirement of
pre-specified number of schedules, this step-size choice achieves a balance between the rapid
initial dissipation of initialization effects provided by a constant learning rate and the asymptotic
convergence guarantees of a polynomially decaying learning rate. In this article, we establish a
number of sharp asymptotic results for the Q-learning algorithm with this particular learning
rate schedule. To the best of our knowledge, our results are the first-of-its-kind theory using this
step-size for Q-learning; the theoretical results and subsequent numerical exercise definitively
showcases the effectiveness and superiority of this learning rate over the ones usually employed
in theoretical analyses.

1.1 Main contributions

The paper develops a comprehensive theoretical framework for Q-learning with power-law decay
to zero (PD2Z-v) learning schedules. Our results advance the theoretical understanding of Q-
learning and offer new insights into its statistical properties and practical performance. The
main contributions are summarized below:

e Non-asymptotic concentration inequality. Under standard regularity conditions, we
derive explicit non-asymptotic bounds on the p-th moments of the Q-learning iterates for
any fixed p > 2. In particular, our £o bounds can be summarized as follows.

Theorem 1.1 (Theorem 3.3, Informal). If Q,, denotes the final Q-learning iterate with the
PD2Z-v step-size, then it follows that

HQTL - Q*HZ S eXp(fcn)|Q0 — Q*| + nimv
where Q* is the long term reward corresponding to the optimal policy 7*.

These bounds serve as fundamental tools underpinning the empirical success of Q-learning
with PD2Z-v schedules compared to their polynomially decaying counterparts (Section 3.1).
In particular, the exponential decay from the initialization is empirically observed in Figure
1, further validating our theory.



e Distribution theory. We propose a novel averaging scheme that aggregates a batch
of the most recent Q-learning iterates, referred to as the tail Polyak-Ruppert averaging
estimator, and establish its asymptotic normality (Section 3.2). This is, to the best of our
knowledge, a novel contribution in stochastic approximation literature. For the PD2Z-v
learning schedules, our simulation (in §5.4) also establishes the superiority of tail PR
averaged estimator over the usual PR averaged ones.

e Strong invariance principle. We establish strong invariance principles with covariance
matching for the partial sum processes of Q-learning with both PD2Z-v and polynomially
decaying learning schedules. This is accomplished via a novel construction of the coupling
Gaussian process, enabling a more refined probabilistic analysis of the stochastic dynamics
(Section 4).

1.2 Related literature

Linearly decaying-to-zero (LD2Z) learning-rate schedules have recently gained substantial traction
in applications characterized by highly non-smooth or complex optimization landscapes, including
state-space models (Touvron et al., 2023), large language models (Devlin et al., 2019; Liu et al.,
2019; Bergsma et al., 2025), and vision transformers (Wu et al., 2024a). A number of studies
further advocate for the so-called “knee schedule” (Howard & Ruder, 2018; Hoffmann et al., 2022;
Iyer et al., 2023; Defazio et al., 2023; Hégele et al., 2024; Bergsma et al., 2025), which employs
an initial large learning rate (a “warm start”) followed by a LD2Z phase. Despite their empirical
popularity, the asymptotic properties of LD2Z schedules remain poorly understood—even in
relatively simple convex problems. To the best of our knowledge, Goldreich et al. (2025) provides
the first theoretical analysis of LD2Z schedules in strongly convex stochastic gradient descent;
but their results are not directly applicable to Q-learning, and they only establish an L5 control
of the terminal iterates Q. This gap in theory presents a significant obstacle to principled
statistical inference and uncertainty quantification, motivating the need for a more systematic
analysis.
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Figure 1: Comparison between polynomially decaying (1; = 0.05¢~96%), LD2Z(n; = 0.05(1 — t/n))
and Constant (n; = 0.05) step-sizes

1.3 Notation

In this paper, we denote the set {1,...,n} by [n]. The d-dimensional Euclidean space is R?,
with Rio the positive orthant. For a vector a € R?, |a| denotes its Euclidean norm. The set of
m x n real matrices is denoted by R”*™ and correspondingly, for M € R™*" |M|p denotes its
Frobenius norm. For a random vector X € R, we denote || X|| := +/E[|X|?]. We also denote



in-probability convergence, and stochastic boundedness by op and Op respectively. The weak
convergence is denoted by . We write ay, < b, if a, < Cb,, for some constant C' > 0, and
an < by, if C1b, < a, < Csb, for some constants Cq, Cy > 0.

2 Preliminaries of Q-learning

Subsequently, we consider a discounted, infinite horizon Markov Decision Process (MDP) M =
(S, A,v,P,R). Here S = {1,...,S} is the finite state space, A is the finite action space, and v €
(0,1) is the discount factor. For simplicity, we define D = |S x A|. We use P : S x A — A(S)
to represent the probability transition kernel with P(s’|s,a) the probability of transiting to s’
from a given state-action pair (s,a) € S x A. Let R: S x A — [0,00) stand for the random
reward, i.e., R(s,a) is the immediate reward collected in state s € S when action a € A is taken.
We represent the distribution P(s'|s, a) using quantile transformation: there exists a measurable
function N (s,a,U), where U ~ Uniform(0, 1), such that

P(N(s,a,U) =38") =P(s'|s,a) for all 5,s' € S and a € A.

Similarly, we can write the reward function as R(s,a,U), where U ~ Uniform(0,1). Let 7 be
a policy, meaning that for each s € S, 7(:|s) is a probability distribution over actions a € A.
Define the expected long-term reward

Qﬂ(870’) = Eﬂ— {ZVZR (Staataz/[t) | S0 = S,ap0 = CL} .
=0

Let Q" = (Q34)(5,0)e5x.4 Where QF, = max, Q"(s,a) is the maximizer.

To estimate Q*, the Q-function vector Q; € R” is updated by (e.g., Watkins & Dayan (1992))
Qi = (1= 1n) Qi1 + nt,nEtQt—l,m Qo,n = Qo,

where B\t is the empirical Bellman operator given by

(B;Q)(s,a) = R(s,a, Vi) + ymax Q(N(s,a,Up),a'), Q€ RP.

Here U, Uy, t € Z, are i.i.d. Uniform(0, 1) random variables. With a slight abuse of notations,
define the matrix P € RP*IS| with rows Psa). = (P(s']s,a))deg. I TI™ € R9*P is a projection
matrix associated with a given policy =:

I1" = diag {71'('|1)T, e ,7r('|S)T} ;

then we define the Markov transition kernel H™ = PII™ € RP*D,

3 Q-learning dynamics with LD2Z schedule and beyond

Before introducing our key results on Q-learning with the LD2Z schedule and its generalization, it
is crucial to state the regularity conditions that guarantee the validity of the theoretical excursion.
In particular, we require the following assumptions.

Assumption 3.1. It holds that E|R(s,a)|P < oo for all (s,a) € S x A, for some p > 2.



Assumption 3.2. There exist 7* € II* and a positive constant L < oo such that for any function
estimator Q € R, we have

(H™ — H™)(Q - Q)| < LIQ — Q%

where 7 (s) 1= arg max,c 4 Q(s, a) is the greedy policy w.r.t. Q.

Assumption 3.1 establishes a uniform control over the p-th moment of the reward function. In
contrast, often the statistical literature on this topic imposes a severely restrictive condition of a
bounded reward, usually constrained in the interval [0, 1] or [—1,1] (Li et al., 2021; Shi et al.,
2022; Panda et al., 2024; Li et al., 2024a; Zhang & Xie, 2024; Chen, 2025). We also remark that
Assumption 3.1 is objectively weaker than the corresponding bounded fourth moment assumption
in Li et al. (2023b). On the other hand, conditions of the type of Assumption 3.2 were first
introduced in Puterman & Brumelle (1979), and have since been employed in Q-learning literature
(Li et al., 2023b; Xia et al., 2024) as a means to establish a local attraction basin around the
optimal policy 7*. Interestingly, this can also be derived from a mild margin condition, as is
described in Appendix §9. The corresponding versions of Assumptions 3.1-3.2 is pervasive in
non-asymptotic analysis of SA algorithms (Ruppert, 1988; Polyak & Juditsky, 1992; Borkar,
2023; Bottou et al., 2018; Chen et al., 2020a; Zhu et al., 2023; Wei et al., 2023).

3.1 Non-asymptotic error bound

Before establishing inferential results involving LD2Z schedules, it is crucial to ascertain their
non-asymptotic convergence properties. On the other hand, it is conceivable to broaden our
view to the class of learning schedules 7, = n(1 —t/n)",v > 0, of which LD2Z is but a special
case with v = 1. This perspective raises another pertinent question; due to the lack of previous
theoretical justifications, it is somewhat unclear as to why the linear decay-to-zero is less effective,
in any sense, compared to some iteration-dependent choice of v. We address both the questions
through our first result. For brevity, we subsequently refer to the schedule 7, = n(1 —t/n)" as
the Power-law decay to zero (abbreviated as PD2Z-v).

Let the Bellman noise be given by

Zi(s,a) = B{(Q")(s,a) — B(Q")(s,a),

which, via (2) immediately implies that Z; are i.i.d. D-dimensional random vectors. Our first
theorem is presented below.

Theorem 3.3. Consider the Q-learning iterates in (2). Suppose for some p > 2, the Bellman
notse satisfies O, = E[|Z;|P] < co. Then, with the PD2Z-v learning schedule with n >0, v > 1/p
satisfying

2(1-7)
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it holds that

1Qin — Q[ <exp (—eant(l—n"1)")|Qo — Q|
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where c3 = % with ¢ = 2(1 —7),ca = (1 —7)2 +2(p — 1)72, and Cy(c,v,p), Ca(c,v,p) are
positive constants given by

2V (1 4 27PD(vp + 1))

Ci(c,v,p) == , and,
c
21/+1 . . 1
Cale,v,p) s= P4 exp(=——) (v + 1) P77 <cn>—*f+*fr<%>-

Theorem 3.3 is proved in Appendix §7.

Remark 3.4 (A sample complexity version of Theorem 3.3). Let N(e,~,r) denotes the minimal

number of samples required to ensure || @y, —Q*||4 < €. In the worst case, G)]lg/ P < ﬁ Therefore,
from Theorem 3.3 , we obtain the following iteration complexity:

1 Qo — Q] 1
N(€777 6) =0 ((1 — 7)2 log < ° P > + (1 _ 7)4+2/y62(u+1)/u> )

We note that for large v, the rate approximately matches that derived by Li et al. (2024a).
The gap for a finite value of v can also be explained by the much weaker assumption that we
work with. For example, we do not assume the rewards to be bounded, and therefore, are only
constrained to work with finite p-th moments of the Bellman noise. In contrast, Li et al. (2024a)
assumes the rewards € [0, 1], which makes the Bellman noise sequences bounded and allows them
to use finer tools from subGaussian theory, such as Freedman’s inequality (in contrast to the
Burkholder’s inequality which is sharp in absence of boundedness). It is conceivable that in
presence of stricter assumption, the worst-case sample complexity can be further improved, but
that is non-trivial.

The non-asymptotic bound in (3.3) is convenient since it covers a general class of learning
schedules with an explicitly quantified bound. Crucial is also the two distinct regimes with two
different rates. We pause for a moment to parse the bound carefully. In the transient regime with
t<n-— C'W,nv%l, the Lo error decays with 7 ,. In particular, for any choice of v > 0, 1, < 1
as long as t < nc for any fixed constant ¢ € (0,1). Therefore, in the early regime, the class of
PD2Z-v learning schedules behave like a constant learning rate while decaying polynomially. The
corresponding Lo error displays a diminishing bias, but this constant learning rate is a crucial key
to its much faster convergence, pushing it towards its convergence regime where t > n — C'W,nﬁ.

In this regime the Q-learning chain has converged with an error-rate n7m7 enabling an early
stopping at any steps in [n — Cp ,nv+1, 0.

The afore-mentioned fast decay, followed by a stabilization in the latter phase, is exemplified
empirically in Figure 1. For a more detailed insight into this early phase decay, it is instrumental
to specify one immediate corollary to Theorem 3.3. Under the assumptions of Theorem 3.3, it
follows that for all ¢ € [n],

1Qen = Q*llp < exp (= can(1 = n71)"1)|Qo — Q[ + Oy (Vi , V™ 2#50),

where O, , hides constants pertaining to c3 and v. We note that at ¢ = n, the right hand side
is minimized at v < logy logn. Corollary 3.1 has some interesting connotations, which we will
discuss in successive remarks. To initiate our first discussion, it is illuminating to recall the
following well-known result for the often-used polynomially decaying learning schedules.

Theorem 3.5 (Chen et al. (2020b), Corollary 4.1.2; Li et al. (2023b), Theorem E.1). Consider
the Q-learning iterates in (2) with the polynomially decaying step-size ny < t=%, a € (1/2,1).
Then, it follows that for all t € [n],

1Q — Q" S exp(—ct'~*)|Qo — Q| + Ot™/?).



In light of Theorem 3.5, Corollary 3.1 sheds more light on the faster decay of the LD2Z and in
general PD2Z-v schedules in the transient phase.

Remark 3.6. Assume v > 0 is fixed. Note that, in particular, when ¢ = n, i.e. at the final iterate,
Q-learning with PD2Z-v schedule instructs that

1Qun — Qllp < exp(—47'1)|Qo — Q[ +n /1.

The dominating decay rate in the convergence phase (the second term in the rates on the right)

is similar in both PD2Z-v and polynomial decay schedules (n_ﬁ versus n~%/2); however, the
effect of initial point is much less pronounced in the former, with an exponential rate exp(—ct) of
forgetting the initialization for all ¢ € [n]. This explains the fast initial convergence of this linearly
decaying rate to a neighborhood of Q*, as also seen in Figure 1. In contrast, the polynomial
step-size only achieves a forgetfulness of exp(—ct'~®). This explains the competitive advantage of
linearly decaying rate over its polynomial counterpart- an advantage that has also been recently
studied in the empirical literature (Defazio et al., 2023; Bergsma et al., 2025). To the best of our
knowledge, this is the first such theoretical exposition highlighting the benefits of linear decay
rate LD2Z and its generalization in the context of Q-learning, while building on the previous works
of Goldreich et al. (2025) in the more general context of Stochastic Approximation algorithms.

Next, we explore another interesting assertion from Corollary 3.1 regarding the optimal choice of
v in the class of PD2Z-v learning schedules.

Remark 3.7. The optimal v balances the fact that Cs(cs,v,2) increases with v, while n” 2D
decreases with v for large n € N. This trade-off yields the threshold v < log,logn, which
grows extremely slowly with n, justifying fixed, iteration-independent choices of v in practice.
This aligns with the empirical success of ¥ = 1, motivating deeper statistical study under the
assumption of constant v. In particular, to round off our discussion on choices of v, we state a
clean result on Q-learning dynamics with LD2Z schedule.

Under the assumptions of Theorem 3.3, for the LD2Z learning schedule it follows that for ¢ € [n],

O(\/Tiem), t <n— Z=y/n
On= Y, t>n— \/207]\/5,

where O(+) hides constants depending on v and 1. Subsequently, we assume that v is fixed, and
move towards sharper asymptotic result beyond L9 control.

”Qt,n - Q*Hp < €xp ( - 6377271t)|Q0 - Q*| + {

3.2 Tail Polyak-Ruppert averages and central limit theory

As a means of variance reduction and faster convergence, Polyak-Ruppert averaging (Ruppert,
1988; Polyak & Juditsky, 1992) has a relatively long history of application in policy evaluation
(Bhandari et al., 2018; Khamaru et al., 2021), Q-learning (Li et al., 2023a,b, 2024a) and Temporal
Difference (TD) learning (Mou et al., 2020; Samsonov et al., 2024, 2025). However, our Lo
error-bounds reveal a crucial insight into whether usual Polyak-Ruppert averaging would ensure
asymptotic normality with these LD2Z and PD2Z-v schedules. Consider v = 1. Write

= A, + B, +C,.

n n n—/n n
Y Qun = }Ztﬁ Qin 12 4—nj2 Qn N 1 2 =0y Qun
2 LT )2 2 n/2 2 n/2

Observe that as long as t < n/2, it holds 7y, > 5-. Therefore, based on the intuition from

stochastic approximation literature with constant step-size, we do not expect A,, to even converge



to Q*, let alone achieve asymptotic Gaussianity. It is not yet clear if C), may achieve Gaussianity
individually; at the very least, its £, convergence to Q* is guaranteed through an argument
similar to Theorem 3.3. Therefore, unless one shows that the asymptotic distribution of B,
exactly cancels that of A, it is conceivable that the error of n~! > or1 Q. is in effect, much
larger compared to Q*. This theoretical insight can also be empirically validated (Figure 4).
Therefore, it is arguably more prudent to investigate the inferential properties of the term C,,
which we refer to as Tail Polyak-Ruppert Averages.

Theorem 3.8. For any constant ¢ > 0 and v > 1/p with p > 2 is same as in Assumption 5.1, let

n

~ 1
CoLE X, Qe
t=n—|cenv+I |41

Grant Assumptions 3.1 and 3.2 for the MDP. Further assume that Qg, Q* € K where K is a
compact set. Then with the PD2Z-v learning rate for (2) with,

2(1-1)
(I=7)+2(p—1)y*

there exists a positive definite matriz 3 = 0 independent of n, such that

nZ 0 (Q, — Q) % N(0,3).

0<n<

Theorem 3.8 is proved in Appendix §7. We remark that an exact expression for X is highly
intractable, nullifying any direct approach to estimate . In §4 we indicate a direct bootstrap-
based approach to perform valid inference.

4 Strong invariance principle

Moving beyond the asymptotic normality of the Q-iterates, the primary goal of this section is to
further deepen the understanding of their stochastic dynamics and to better characterize the
asymptotic distributional approximation of the associated partial sum process by deriving a
powerful probabilistic tool known as the strong invariance principle. Due to space constraints, we
include a broad discussion on the relevant literature in §8. Due to the non-stationary nature of the
sequence (Qgn)e>1, its stochastic dynamics cannot be well captured by the standard Brownian
process. Motivated by Bonnerjee et al. (2024), we instead propose approximating the partial
sum process of (Q:,) by that of a non-stationary Gaussian process specifically designed for
matching the covariance structure. Specifically, let Xq,...,R,, € RP be i.i.d. centered Gaussian
random vectors with covariance matrix Cov(®;) = Cov(Z;). Then, in light of (2) and the linear
approximation in (7.3), we define the Gaussian process (Y;);>1 via Yp = 0 and

Yi=UI —=mnG)Yeo1 +mn®e, t>1,
where G = I — vH™ € RP*P_ Throughout this section, we focus on the LD2Z schedule.

Theorem 4.1. Grant Assumptions 3.1 and 3.2 for the MDP. Consider the learning rate PD2Z-v
learning rate and grant the assumptions of Theorem 3.8. Then, for all sufficiently large n,
there exists a probability space on which one can define random vectors QS, ..., Q5 such that

c yn D n
(Qt,n)tzl = (Qtn)ie, and

S (Qf - Q - V)

=t

max

- 1/p
kn<t<n op(n "),

o

where ky, =n — Lcn#ﬂj +1, and ¢ > 0, v > 1/p are constants.



Remark 4.2. Theorem 4.1 provides the first strong Gaussian approximation for the partial sum
process of Q-iterates with PD2Z-v schedule. In the context of Q-learning, only functional central
limit theorem is established Li et al. (2023b) for the polynomially decaying step sizes. A similar
time-uniform approximation can also be established for the polynomially decaying learning
schedule, which may be of independent interest.

Theorem 4.3. Grant Assumptions 3.1 and 3.2 for the MDP. Consider the learning rate i, = nt =9

in (2) forn >0, 8€ (1—1/p,1), where p is same as in Assumption 3.1. Then, there exists

(Ne) 7y S N(0,T") such that, with

th = (I_ﬁtG>YVt*1 +ﬁtNtaYb =0,t > 1, G = I_’YHﬂ*a
it holds that,

max = op(n'/P).

1<t<n

t
d(Q-Q -1
=1

[e.9]

The key difference between the results of Theorems 4.1 and 4.3 is in the way partial sums
are uniformly approximated. It is well-known that the polynomially decaying step-sizes offer
attractive asymptotic properties; the optimality of Theorem 4.3, despite being new in the
literature, is therefore not surprising. The strong approximation result is also classical in its
expression, strongly echoing results such as Komlos et al. (1976). In fact, it can be argued that
the approximation in Theorem 4.3 is much sharper than a functional CLT approximation Li
et al. (2023b). As a toy example, consider the vanilla SGD setting, and suppose K = 1. Suppose
F(0) = (0 — p)?/2, and V£(0,€) := 0 — u+ €. In this setting, the Gaussian approximation
analogous to (4.3) is

Yt,cjz =~ nt,nA)Ytgl,n + My, Ly~ N(0, Var(¢)), YOC,:n =0

Here A = V3F(u) = I. On the other hand, the vanilla SGD iterates can also be seen as
Yin —p = (I —nenA)(Yicin — 1) + nenée. Therefore, it can be seen that Y, — p and Yﬁ1
have exactly the same covariance structure, i.e. Cov(Y.S,, YG) = Cov(Ys , Yin); on the other
hand, even in such a simplified setting, an approximation by Brownian motion, such as that
by functional CLT, captures the covariance structure of the iterates {Y; — p}¢>; only in an
asymptotic sense. The Gaussian approximation YtG in (4) is a particular example of covariance-
matching approximations, introduced by Bonnerjee et al. (2024)- but generalized to account for

the particular non-stationarity imposed by Q-learning iterates.

On the other hand, a strong approximation result for PD2Z-v schedule works on the tail partial
sums, much akin to the tail PR-averaged central limit theory. Moreover, the range of the
approximation is also limited between k;,, and n, which may mean n— [/n| to n for the particular
case of LD2Z schedule. Noticeably, despite the much faster decay from the initialization, for larger
values of v, PD2Z-v can also maintain a time-uniform strong approximation for almost the entire
range of its steps. Moreover, in polynomially decaying step-sizes, in aiming for the optimality of
strong invariance principles, the choice of 8 =~ 1 implies that the decay of Q; from the initialization
Qo is O(1); i.e. there is practically or very slow decay, which results in extremely slow convergence
to the asymptotic regime. In contrast, even when uniform Gaussian approximation is assured,
the inherent properties of the PD2Z-v schedules do not affect convergence. Finally, no functional
central limit theory is even known for these learning schedules.

Finally, we remark that as an immediate result of Theorem 4.1, for p > 2,

< Y| < — 0.
- Z) (k}}i?)én Z ! - Z) ‘
o (o]

n

> Q- Q)

P | max
kn<t<n =

sup
2>0
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Beyond theoretical interest, (4) hints at practical, bootstrap-based algorithms for time-uniform
inference. In particular, the estimation of covariance matrix of Q,,, especially for the PD2Z-v
learning schedule, may be significantly non-trivial. However, estimation of I' and H™" can be
essentially done using (2) and the fact that BQ* = Q*. This hints at an easily implementable
Gaussian bootstrap procedure by running multiple independent chains of Y; parallelly. Similar
inferential procedures have been proposed in a time-series context in Wu & Zhao (2007), and
also more recently in Bonnerjee et al. (2025) in a local SGD setting.

5 Simulation Results

In this section, we present some numerical experiments that empirically explore our theoretical
results. In §5.2, we compare the performance of LD2Z schedule with the polynomially decaying
and the constant learning rates, as well as the PD2Z-v learning rates with v = 2,3. Moving on,
In §5.3 we investigate the accuracy of our time-uniform approximations. We also provide some
additional simulation studies involving the central limit theorem in Appendix §5.4.

5.1 Set-up

For each of the experiments, we consider a 4 x 4 gridworld with the slippery mechanism in
Frozen-Lake (Zhang & Xie, 2024), and four actions (left/up/right/down). The discount factor
is taken as v = 0.1. There are two special states, A and B, from which the agent can only
intend to move to A" and B’, respectively. Once an action is chosen according to the behavior
policy, the agent moves in the intended direction with probability 0.9, and with probability 0.05
each, it instead moves in one of the two perpendicular directions. If the agent attempts to move
outside the grid, it remains in the same state and receives a reward of —1. Otherwise, the reward
depends on the current state, with r(A) = 10, r(B) =5, and r(s) = 0 for all s # A, B.

5.2 Comparative performance between learning rates.

In these experiments, we consider Q-learning with initialization at 0; since it’s clearly evident in
Figure 1 that LD2Z massively outperforms the polynomially decaying step size, we focus on LD2Z
PD2Z-v and constant learning schedules. For the experiments in Figure 2 (Left), we fix n = 5000,
and run B = 1000 many Monte-Carlo Q-learning chains. Subsequently, for each learning schedules
considered, we plot the mean error |Qq, — Q*|o for 1000 < t < n along with corresponding
shaded bands indicating one standard deviation. On the other hand, for Figure 2 (Right), we
run B = 1000 many independent Q-learning chains for each of n € {500, 100, 1500, 2000, 2500},
and plot the mean error |Q, , — Q% against n, along with corresponding shaded bands.

Clearly the PD2Z-v learning schedules outperforms the constant learning rate, which maintains
a consistent bias having converged to a stationary distribution. On the other hand, increasing
v seems to have a small effect at reducing the error |Q:, — Q*|oc when ¢ < n. However, if we
focus only on the final iterate error |Qy., — Q*|, the performance is similar across v € {1, 2, 3}.
This hints at a surprising stability across the PD2Z-v class, justifying the widespread use of LD2Z
schedule.
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Figure 2: Performance comparison between LD2Z, PD2Z-v with v = 2,3 and constant learning
schedules.

5.3 Experiments on time-uniform approximations.

In this section, we empirically investigate the time-uniform strong approximation results in
Theorems 4.1 and 4.3. Working with the same 4 x 4 gridworld setting with number of iter-
ations n = 5000 as in the previous section, in Figure 3 (Left), we consider the quantiles of
maxy, <t<n | 21— (QFf — Q*)|oo, for the LD2Z step-size 1y = 0.05(1 — t/n) and compare them
with the corresponding quantiles of maxy, <i<n | > ;—; Yiloo. All the quantiles are empirically
calculated based on B = 500 Monte Carlo repetitions. Similarly, Figure 3 (Right) corresponds
to the Gaussian approximation in Theorem 4.3 for the polynomially decaying learning rate
ne = 0.05¢7905 In particular, Figure 3 (Right) also contains the corresponding quantiles of the
Brownian motion based approximation (Theorem 3.1, Li et al. (2023b)). Despite the ubiquity of
functional central limit theory, the sub-optimality of such approximation in terms of uniform
approximation is evident. Together, these experiments establish the accuracy of the time-uniform
approximations in §4, calling for their increased use in bootstrap procedures.
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Figure 3: Q—Q plots of sup-norm distributions.

5.4 Central limit theory in practice.

This section is devoted to empirically validating the central limit theory established in §3.2. To that
end, we first establish the efficacy of the tail Polyak-Ruppert averaged iterates (Q,,) over the usual
PR-averaged versions (denote by Q,,) for LD2Z learning schedule. For n. € {1000, 1500, ..., 5000},
we estimate E[|Q, — Q*|oo] and E[|Q,, — Q*|wo] over B = 1000 Monte-Carlo repetitions. From
the corresponding illustration in Figure 4, the superiority of Q,, over Q,, is clear.
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Figure 4: L, error comparison of PR-averaged and tail PR-averaged iterates.
6 Discussion & Limitations

In this article, we develop asymptotic theory for the Q-learning with LD2Z and the more
general PD2Z-v learning schedules. Despite their increasing use in generative models, these
learning schedules are yet to be thoroughly explored in the theoretical literature of stochastic
approximation algorithms. To the best of our knowledge, this work constitutes the first one to
include a systematic treatment of this step-size for Q-learning. Future extensions include the
theory for the potential bootstrap algorithm and Berry-Esseen bounds to properly quantify the
central limit theory.

Moreover, as pointed out by a reviewer, LD2Z step-size schedule is applicable primarily in offline
reinforcement learning settings with pre-collected datasets, where the total sample size n is
known in advance. We acknowledge this as the main limitation of the LD2Z schedule when
applied to Q-learning. However, our methods allow for the case where n is mis-specified. Let
ng < n denote the true sample size, while n is used in the LD2Z step-size schedule. Then, as
long as the mis-specification satisfies n — ny < ay/n for some constant o € (0,1), our asymptotic
results remain valid. Generalizing LD2Z and PD2Z-v to online RL set-up constitutes an interesting
direction, and warrants further research.
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All the relevant reproducible codes and figures can be found in the anonymous Github repository.
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7 Appendix A

In this section we collect the proofs of Theorems 3.3 and 3.8.

Proof of Theorem 3.5. Denote Ay, := Q. — Q*. Then, it is immediate that

At,n = (1 - ﬁt,n)(Qt—Ln - Q*) + Ut,n(BtQt—l,n - B(Q*))
= AN+ e Ze + My + (H™ 0 — H")Qu1.0),
where Ay = I — G, and My, = (Py — P)(Vi—1,n — V™). From the definition of greedy policy,

it follows that (H™-1» — H™ )Q* < 0, where < and > are interpreted element-wise. Therefore,
clearly

At (I = (I —yH™ 1)) Ap1 i + Nen(Ze 4+ v M),
which directly yields, via Proposition 4 of that

[A¢Rl2 <1 = nen(l =) A—1alls + 200 — D07 (1 Ze]12 + 72 | Menl|2)
<((1=nea(l =) +2(p — D07 E Arm1,nl?] + 07 o,

with ¢, = 2(p — 1)912;/ P Recursively, it holds that

t
1AeallE < AblAof® + ¢ Y02 AL,

s=1

where Af = H;ZSH(I — NjnC1 + 77]2»’”02), where ¢; = 2(1 —7),ca = (1 —4)? +2(p — 1)72. From
the choice of 1 satisfying nc; — n%ca > 0, we can derive

t
AL <Al = [ (= njmes),
j=s+1

for some small constant c3 € (0,1). In light of Z;Zl Nin > nt(l —n~h?, we have Af <

exp(—c3n(1 — n=1)¥t). Therefore, applying Lemma 11.1 the proof is completed. O

Proof of Theorem 3.8. We consider deriving the Gaussian approximation through a series of
steps. In particular, our proof strategy is to linearize the Q-learning iterates before applying
suitable, off-the-shelf central limit theory. The steps till linearization are not straightforward,
especially in light of the complications arising out of PD2Z-v learning rates. In particular, the
non-linearity of the Bellman operator requires careful tempering. We provide the formal proof in
the following. Throughout the proof, we let k, = n — Lcn#lj

7.1 Stepl

Let Qf = Q*, and define the oracle Q-learning iterates

Q)= (1= ) Qi1 + NnBIQ_ 1, t 2> 1.
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Note that

‘th - Q?,n|oo < (1 - 77t,n)|Qt—1,n - Q?—l,n oo T T}t,n|BtQt,n - BtQ?v"‘oo
< (1=l = M)IQt—10 — QF1nloc

<Y5(1=7) [Qo — Qe

where for ¢ > 0, Y!(c) = H;:Z +1(1 = mjne), and the second inequality in (7.1) follows from
the contraction of Bellman operators (2). Elementary calculations show that Y{(1 — ) <,
exp(—cyyyt) for some ¢ > 0, which implies, via (7.1), that

n

n2|Qy — Q4 < 020 (n— k)T Y |Qun — Qoo

t=kn
v n
Sn_%’“)/ exp(—ct) dt
1
=0(n 2(1'11)) almost surely.

Therefore, Step I enables us to investigate the asymptotic properties of Q°.

7.2 Step II

Define the empirical version of P as
Pt((sa (1), ) = (lst:s’,st_1:s,at_1:a)s’€S'
In other words, P; € RP*IS| is a matrix with one-hot-coded rows. Moreover, let

‘/t,n(s) = glgﬁ Qt,n(87a)7 and V*(S) = Zr}gﬁ Q*(S,CL),

with Vi, = (Vin(s))ses € RISI and V* likewise defined. Note that,

Pt‘/t—l,n = max Qt—l,n (N (87 a, Ut) 7a,) ’
a’€A

and PVi_1, = E[P:Vi_1n|Fi—1] where F;_; is the o-field induced by the random variables
(Us, Vs)s<t. Clearly, PV* = Emaxyec4 Q* (N (s,a,U),d")], U ~ U0, 1]. Observe that
BiQ 1, — BQ" = BiQj 1, — BQ" + Z
=YPt(Vicin — V") + Z4

= v(Mt,n + (H™ o — HYQSyyy +YH™ (Q§_1 ., — Q*)) + Zy,

where (7.2) follows from Z; = B;Q* — BQ*; (7.2) is implied by (2), and (7.2) is obtained after
defining M; ,, = (P; — P)(Vi—1,n — V*). Note that, in particular Z; are mean-zero i.i.d. random
variables, and (M;,)i>1 is a martingale difference sequence. Now, using B(Q*) = Q* and
(7.2)-(7.2), rewrite (7.1) as

Apn = Q5 — Q" = (1= ) (Qf_1. — Q) + 1 (BQ_y,, — B(Q))
= At 1+ MinZt + Ve (My g + (H™ -1 — H™)Q)_1,),
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where Ay, =1 — G, G =1 — ~H™ , and Ay = 0. Define another “sandwich" sequence as
follows:

Al(f,l’;z) — AtAf‘f)l,n + 77t7nZt —+ ’Yr’t,thJ“ A(()2) =0.
Following the property of optimal policy, it is immediate that (H™ — H™ )Q;_1, > 0, and hence,
L
Alg,n) < At,n-

Moreover, it follows that

L L o *
EA,, — A8 ] <= nen(@ = MENA 1, — AP loo] + E[(H™ =10 — H™)QE_y o]
L 7T<> ﬂ.*
(1= (1 = AENA 1, — A o] + ¥ BI(HT=1m — H™ ) A o]

<(1 = 1n (1 = ENA 1 — AP o] + YLt nE[| Ar—10/%)

t
=LY 0o nALE[Qu i — Q2]

s=0
kn t
< 2 At et Al < o
~ ns,n S n 778,” s~ T :
s=0 s=kn+1

where (7.2) follows from noting that (H™-1n — H™)Q* < 0; (7.2) follows from Assumption 3.2,
and (7.2) involves an application of Theorem 3.3 and Lemma 11.1. Clearly, (7.2) produces

nIE[|A, — AP)| ] = O(n” 20D )
which implies that

n?0 (A, — AP) 5o,

7.3 Step III

L)
n

In this step, we will show that both Ag
further define

is well-approximated by a linear process. To that end,

Xin =4 Xi— 10+ M0y, Xo=0.

With this definition established, we can proceed to approximate Agﬁl) by Xi,. Indeed, with
Al =AM — X, eRP.
L L * L
E[AL ] Sp BIAL = BN = min(T = vH™ DAL, LB + 12 B M, 3]
L
< (1= (1 = MIENAL, B + 2BV, — V]

t
Sk ARV - VP

s=1

kn t
3 t P, 2 t —9-r_
5 E ns,n‘As +n vl E ns,n‘As S n et

s=0 s=knp+1
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where the second equality uses the fact that M,, are martingale differences; the inequality

in the third assertion involves (i) using that H™-1n is a stochastic matrix to deduce |I —
Nen(I —YH™ Yoo = 1 — (1 — ), and (ii) using that both P; and P are stochastic matrices to
obtain |P, — P|s < 2 ; the final assertion invokes Theorem 3.3 and Lemma 11.1. Equation 7.3
immediately results in

nTEAY — Xoloo] =020 37 \EIAL ] = 0”7,
t=kn

which, similar to (7.2) implies that

n2e 0 (AP — X,) 50

7.4 Step IV

In light of (7. 1) (7.2) and (8), the proof is complete if one derives a central limit theory of
Xn=(n—kn) ' 30, Xin. To that end, re-write

Zth—Znansn287 Vsn— Z A

t=kn t=sVkn

where Aéyn = H;‘:erl Ajn. We proceed step-by-step. Let Ly, = sV k,. Firstly, note that

n t
s Zt kn(”_t)
ZUS"’V5"|F S nu+1 Z Z UN n‘As nﬁ’ S nvit Z an,n|Ag,n|% - (nU'H —>

nv
s=1t=Lsn+1 t=ky, s=1

= O(nvi),
which establishes the Lindeberg condition that n D max, Ns.n|Vsn| = O(1). Now we shift
focus to showing that
W, i=n vl Znsnv IV, =2

for some X > 0. Write §
W, = (1 — 1/n)7+1Wn,1 + R,

where
n—1
Rn =n vl Z [(Cs,n - Cs,n—l) FCLIn,1 + Cs,nr (Cs,n - Cfs,n—l)—r 5 Cs,n = 7757nvs,n
s=1

The proof follows by showing that nR, is a Cauchy sequence in R%*? through an argument
mimicking Lemma 11.1, and we omit the details for brevity. Finally, our conclusion follows from
(7.4) via Lindeberg-Feller central limit theory. O

8 Appendix B: Discussion on Strong approximation of Q-learning
iterates

Related Literature. The method of invariance principle was introduced by Erdés & Kac (1946)
and has since been extensively studied, serving as a powerful tool for analyzing distributional
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properties in a wide range of statistical inference problems (Csorgd & Hall, 1984; Csorgo &
Révész, 2014). Applications include nonparametric simultaneous inference (Liu & Wu, 2010;
Karmakar et al., 2022), change-point detection and inference (Wu & Zhao, 2007), online statistical
inference (Lee et al., 2022; Zhu et al., 2024; Li et al., 2023b), and construction of time-uniform
confidence sequences (Waudby-Smith et al., 2024; Xie et al., 2024).

For independent and identically distributed (i.i.d.) random variables, Strassen (1964) initialed the
study of almost sure approximation for the partial sums by Wiener process, and was later refined
by Csorgs & Révész (1975a) and Csorgd & Révész (1975b). The optimal strong approximation
in this setting was established in the celebrated work (Komlés et al., 1975, 1976). Specifically, let
€1,...,&, € R be ii.d. centered random variables with Var(¢;) = o2 and E|& [P < oo for some
constant p > 2. Then, for the sequence of partial sums {S¢}};, where S; = 23':1 &, there exists
a probability space on which one can define random variables &5, ..., &, with the partial sum

process S§ = Z;zl £5, t > 1, and a Brownian motion B(-) such that {S{}HL, 2 {St}}-; and

max 15¢ — oB(t)| = 0a..(n'/P).
Extensions of this result to multidimensional independent (but not necessarily identically dis-
tributed) random vectors has been developed by Einmahl (1987), Shao (1995), Gétze & Zaitsev
(2009), among others. Another line of research, more relevant to the online learning where
the outputs may exhibit temporal dependence, has focused on generalizing the above strong
approximation to dependent data; see, for example, Heyde & Scott (1973), Lu & Shao (1987),
Wu (2007), Liu & Lin (2009), Dedecker et al. (2012), Merlevede & Rio (2012), among others.
A notable contribution in this direction was made by Berkes et al. (2014), who established the
optimal strong approximation for a broad class of causal stationary sequence {& };>;. Under
mild regularity conditions, they proved that

121?;(” |57 — 0ocB(t)] = Oa‘s.(nl/p)a
where 02, = 3,7 Cov(&,&) = lim,—o Var(S,)/n stands for the long-run variance. This
result implies that the process {oocB(t)}}_; can preserve the second-order properties of {S;}:>1
asymptotically.

However, in the context of Q-learning with time-varying step sizes, these results do not apply
due to the nonstationary nature of the iterates {Qyp }+>1 defined in (2). Unfortunately, strong
approximations for non-stationary data remain relatively underexplored. Some contributions
include Wu & Zhou (2011), Karmakar & Wu (2020) and Mies & Steland (2023), which lead to
the following result: there exists a Gaussian process {G;}+>1 such that Cov (G, Gs) =~ Cov (S, Ss)
and
ax |57 — Gil = op(mn).

Compared to {o.B(t)} in (8), this more general {G;} can better capture the dependence structure
of {S;}, as it allows potentially non-stationary increments {G; — G;—1 }+>1. However, until the
recent work of Bonnerjee et al. (2024), it remained unclear how to explicitly construct such a
process with optimal convergence rate. They provided an optimal Gaussian approximation of the
form (8) with optimal 7,, = n'/P and an explicit construction of the coupling Gaussian process
{G¢}. Motivated by this, one of the main objectives of this paper is to derive an optimal Gaussian
approximation for Q-learning, including an explicit construction of the coupling Gaussian process.
It is important to note that the dependence structure of {Qq ., }¢>1 is significantly more complex
than that considered in Bonnerjee et al. (2024), and thus their results are not directly applicable.

Now we proceed to the proofs of the results in §4.
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Proof of Theorem /.1. From equations (7.1), (7.2) and (7.3) it also follows that

max ‘ Z(QSJ’L - Q* - Xs,n)’ = OP(l)
t

kn<t<n
s=

Note that (7.3) can be cast into the following form:

t
Xt,n = Z nsAl;_ljnZSa
s=1

where Ag}n = H§:s+1 Ajn, s,t >0, and Al := I for t > 1. Moreover, using Theorem 4 of Gotze
& Zaitsev (2009), on a possibly enriched probability space, there exists N, E (0,T), such that

max |Z Ny)|oo = op(n'/P).

1<t<n

If one defines Y; as
Yi= U = nen( —vH™ ))Yie1 + nenRe,
then, for t > k,,,

n

Z( ZZUsnAs 1nZ W)

=t 1=t s=1
_ZZUSHAS an W)
s=11=sVt
t n
:ZZT/SJ’LAéfl,n(Z‘S_W Z ZnSnAs ln Z W)
s=1 [=t s=t+1 I=s

Let us tackle the terms in (8) one-by-one. In particular, a similar treatment as Lemma 11.1
provides that for all s € [n]

! —
5, 285 e 2 ALl =00,

Therefore, for the first term in (8), one obtains

t n t
l l
S (DD WAy (Zs = Wo)loo S(;Igwgn A Mon Z !As_l,n\F> x| (Zs = Wo)loo
s=1 I=t =t s=1
:op(nl/p),

where the op assertion follows from (8). The assertion for the second term follows from noting

n
max m E ! l
ax max A, | ,.|Fr £ max max E Al |k
En <t<nt<s<nnsn [As-ral kn, <t<n1<s<tnsnl =t Aol

This completes the proof. O

Proof of Theorem 4.3. We follow a proof similar to that of Theorem 4.1. Since the learning rates
no longer depend on the number of iterations n, we omit the n from the subscript.
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8.1 Stepl

Similar to Step I in Theorem 4.3, elementary calculations show that Y (1 — ) <, exp(—ct!=#)
for some ¢ > 0, which implies, via (7.1), that

t

max |Z(Qs — Q)| < Z Qi — Qe S /1 exp(—ct'™?) = O(1) almost surely.
== 1 t=1

8.2 Step II

In this case, it follows that

(A — AP o] <(1—me(1 = )E[A,; — t Vool + E[(H™1 — H™)Q§_ |oc)
<1 —=n(1 = ))E[JA;4 — t 1|oo] + B[ (H™=1 — H™ ) A1 o]
< = (1= )E[ A — t Voo) + YERE[A—11%]
<(1— (1 = )ENA,_ — AP o] + L2002,

-

where (8.2) involves an application of Theorem E.2 of Li et al. (2023b). Clearly, in lieu of

B >1—1/p, (8.2) entails
E[A; — AP |o] = O(m),

which produces

1/p
g%\ZA — Ao = 0p(n1/P),

8.3 Step III

In this step, we have,
E(l6 2] Sp EL6M 3] = EI(I — (I — vH™ )65, 3] + yiE[| M, 3]
< (1 —ne(1 = ))EN6 B+ 1n22EV,_y — V* I3
< (1= (1= 7))E[6") Bl + O(}),

whereupon one invokes Theorem E.2 of Li et al. (2023b) to conclude E[|A;_1|%] = O(m).
Equation (8.3) immediately results in

maxrz (A% — x,)| = Op(n" ) = op(n'/?),

1<t<n

similar to (8.2).

8.4 Step IV

This step also follows similar to that of Theorem 4.1 by denoting B, = ns Z?:s Agfl and
observing

t t
max | Y (X; = Vi)|eo < max | By oo max | > (Zs = Ro)|oo = 0p(n'/P),
=1 ’ =1

1<t<n 1<t<n
S= s=
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where the second inequality employs Lemma A.2 of Zhu et al. (2023) along with (8). Note that

by construction, (Xf)i>1 £ (X¢)t>1. The proof is concluded by combining (8.1), (8.2), (8.3) and
(8.4). O

9 Appendix C: Derivation of Assumption 3.2

The key insight behind the Assumption 3.2 is ensuring that the optimal policy, and the optimal
quality function is unique. In that regard, we consider the following simple margin condition,
that can be more illuminating in the Q-learning context.

Assumption 9.1. The greedy policy 7*(s) = arg max, Q*(s, a) is unique for every state s, and
satisfies

A = min(Q*(s,7(s)) — max Q*(s,a) >0,

Under Assumption 9.1, we derive Assumption 3.2. To that end, suppose |Q — Q" < A/2.
Then, by definition of the greedy policy, H™@ = H,«, and hence, Assumption 3.2 is trivially
satisfied. On the other hand, if |Q — Q*|s > A/2, then from |H™ — H™ | < 2 it follows

(H™ — H™)(Q — Q)loe < 2/@ — Q'oc < 1@ — Q"2..

10 Additional Experiments

In this section, we work with a large discount factor v = 0.99, and consider the step-size choices
polynomially decaying, LD2Z and PD2Z-v with v = 2, 3. Firstly, we consider n = 20000 number
of Q-learning iterations, and look at a special case of polynomially decaying step-size, viz. the
linearly decaying step size n; = 0.25/t. Based on B = 500 Monte Carlo repetitions, we plot
empirical estimates of E[|Q; — Q*|s] against ¢ € [n] for the LD2Zstep-size n; = 0.25(1 — t/n)
and PD2Z-v step-size choices 1, = 0.25(1 — t/n)” with v = 2,3, and compare it with empirical
estimates of E[|Q; — Q*|oo] for the linearly decaying step-size, where Q; =t~ >/ _| Q; denotes
the running Polyak-Ruppert average. It can be seen in Figure 5 that as per our intuition and

200

150

100} —— PD2Zv:17,=0.25(1 —t/n)*,v=2
—— PD2Z-vin,=0.25(1—t/n)",v=3

le.-o*

50

0 2500 5000 7500 10000 12500 15000 17500 20000
t

Figure 5: Comparison between different step-size choices.

previous results, neither the end-term nor the PR-avergaed iterates have converged even after
20000 iterations for linearly decaying step-sizes; they will eventually converge, and will eventually
obtain better asymptotic approximation error compared to LDTZ or PDTZ stepsize choices, but
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this asymptotic regime kicks in much, much later than is often realistically possible in many
scenarios. ~ We can also replicate corresponding versions of Figure 2 for v = 0.99 with this
particular setting, which we report below.

= LD2Z:n,=0.25(1 —t/n)

61 ~8— Constant: 5,=025
~— Constant: 7,=025 —@— LD2Z:y,=025(1 = t/n))
—— PD2Z-v:in,=025(1—tln)",v=2 10 —O— PD2Zuin=025(1 -t} v=2
sk —— PD2Zw i =025(1 —ln),v=3 8~ PD2Zu:y=025(1~thn) v=3
8
24
. =
S A A i A A AN S
L3 !
S E

ok i H . i i S i L L
10000 12000 14000 16000 18000 20000 5000 10000 15000 20000

t

Figure 6: Performance comparison between LD2Z, PD2Z-v with v = 2,3 and constant learning
schedules.

10.1 Affect of learning rate constant

To further validate the efficacy of our learning rate schedules, we consider the effect of leading
constant 7 in the performance of the Q-iterates. In the following, we consider our 4 x 4 gridworld
with discount v = 0.99, and the following step-sizes: polynomially decaying : 7, = nt—0-5%;
constant: 7y = n; LD2Z: 1, = n(1—t/n); PD2Z-v-2: 1 = n(1—t/n)?; and PD2Z-v-3: 1, = n(1—t/n)3.
We vary n € {0.1,...,0.9}. For each choice of n and learning-rate, we run the Q-learning iterates
for T'= 20,000 episodes, and report the sum of rewards per epsiodes averaged over 100 initial
episodes (for the initial phase), and 1000 final episodes (for the asymptotic phase). The averaged
total rewards are further averaged over 500 Monte Carlo runs for stability.

Alpha Sweep: All Methods Comparison

7.0

6.5

Average Episode Reward

50 ~@~ Constant (First 100) =A= LD2Z (Last 1000)

=@~ Constant (Last 1000) =@~ PDTZ-2 (First 100)
=~ Polynomial (First 100) =@ PDTZ-2 (Last 1000)
<8 Polynomial (Last 1000) ~ =¥= PDTZ-3 (First 100)
—— LD2Z (First 100) =¥~ PDTZ-3 (Last 1000)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Alpha (Learning Rate)

Figure 7: Total sum of rewards on an average reward for the initial phase and asymptotic phase
for different learning rates and different n’s

In Figure 7, the solid lines correspond to the initial phase, and the dashed lines correspond to
the asymptotic phase. It is clear that the polynomially decaying step-size is least performing
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in the initial stage. Moreover, even after 50000 episodes, its asymptotic phase hasn’t kicked in.
On the other hand, the fact that QQ-learning constant learning rate does not converge, is also
evident, as larger learning rate constant constant results in increasing bias. In comparison, both
the LD2Zand PD2Z-vlearning rates maintain a performance comparable to the constant learning
rate in the initial phase, while providing convergence in the asymptotic stage.

10.2 Additional simulations on central limit theory

We investigate the asymptotic normality of Q,,. For n = 5000 and 10,000, we compute Qnn—Q~,
and project them along 6 randomly chosen directions u € S%~!. For each random direction
u, the empirical quantiles of n'/4u"(Q, — Q*) - generated based on B = 1000 Monte-Carlo
repetitions - are visualized in a QQ-plot against the corresponding quantiles from a standard
normal distribution. The asymptotic normality is apparent from the QQ-plot being on a straight
line. The accuracy of the scaling n'/4 is also evident from the two QQ -plots, corresponding to
n = 5000 and n = 10,000, being virtually identical.

Figure 8: QQ-plots of n'/*u"(Q,, — Q*) for randomly generated unit vectors u and n = 5000.

Figure 9: QQ-plots of n!/ 4T (Q, — Q) for randomly generated unit vectors u and n = 10000.
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11 Auxiliary Results

In this section, we collect some key mathematical arguments that we have repeatedly used
throughout our proofs.

Lemma 11.1. Let Al = H] s+1(1 = mjnc) for some small ¢ € (0,1), with ns, = n(l — 3)¥,
n>0,nc<1andv>1. Then for allp > 1, t € [n], it holds that

Cl(c,y,p)nggl, t<n— —2_pvi,
Z o AL < , (em)rt
02(67 va)nim(pilx t>n— 2 T nTJrl7
(en) VT

where C1(c,v,p) and Cy(c,v,p) are defined as in Theorem 3.5.

Proof of Lemma 11.1. Our proof proceeds through a series of steps by first establishing a uniform
bound on A%, and then carefully establishing control on Zizl nhn AL on a case-by-case basis. To
that end, let J(u) = (1 —u/n), u € [0,n]. Observe that v +— J(u)" is a non-increasing function
for any v > 1. Therefore, for any s < t € [n], it follows

t+1

> Bin 2 [T du= TR+ ) = T 1)) 20T (641 ),

S v+1

where the final inequality in (11) follows from the non-increasing property of 7. Consequently,
one can use (11) to derive that

t
AL <exp(—cs > njm) < exp(—esnT (t+1)"(t — 9)).
Jj=s+1

This completes the first step of our argument. Moving on, we use (11) to derive sharp upper
bounds on 3¢ _, n%,.AL. This can be approached as follows.

v .
—nv+1. In this case, we proceed:
(cam) vHL

Case 1. t >n —

(T(s+ )" =Tt +1)")

t
;77 Atﬁnpzj )77 exp(—cz— " i

+
=nPn="P Z(n —5)"Pexp < - 0377 (n—s—1)"" —(n—t— 1)”+1))

n—1 v

n
=nPn~"P E'Pexp(—c
! k:zn:t bl 2

o0 -V
< npnyp/ (u+1)"exp (—esn n (Wt = (n—t—1)") du
n—t—1 v+ 1

(k= 1) = (n—t —1)""))

-V

uu+1) du

—+-1 v+1 00
< nP4"PnP exp(ycinl n " ) )/ (u”? + 1)exp(—0:zﬂ7ynJr ]
0

ovtl v vl up 41
)P~V AT
V+1)(V+ ) (csm) (V+1

ovtl 1y _wptl _up+1
< 2nP4rP + 1PV v T

(vp+1)

Jni
)n*ril(Pfl)

< 2nP4"Pn P exp(

I
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where in (11) we have invoked n — ¢ < — L.

Case 2: t<n—

T,
(eam) v+l

First observe that,

an’nAt<n”ZJ )P exp(—eznJ (t+ 1) (t — s))

t—s
<Py T (= k)P exp(—cand (t+1)k)
k=0

<2 (T(0) + 1) exp(-esnd (¢ + 1))

csnJ (t+1)” o0 U vp )
p1 —exp(—e3nJ (t+1)7) /0 (T + ﬁ) exp(—esnJ (t+ 1)Yu) du

D ovp—1 up 00 VP e
=T e L+ 1)7) (J(t) +/0 (I E T 1)) p(—v) d )
D 2vr—1 vp p

where (11) follows from noting J(t — k) = J(t) + %; (11) derives from an application of Lemma
11.2; (11) is obtained by the elementary inequality (x +y)? < 2971 (27 4 y9) for ¢ > 1. Finally, in
(11), I'(:) denotes the Gamma function. The two terms in (11) following the leading constants
are particularly interesting; the first term increases with ¢, and the second term decays with t.
The interplay between these two terms will naturally lead to two regions on which the rates will
be controlled case-by-case.

Now, recall that in this particular regime, it is immediate that csnnJ (t)” > ?7( 77+ Moreover, since

2 pmiT > 2. it follows that in this regime, J(t+1) > J(t)/2.

(cam) v +1

n is sufficiently large such that

Therefore,
TP+ (esmnI(t+ 1)) PT(vp+1) < TJH)"P(1+27PT(vp+ 1)),
which, when plugged in (11), implies that

E gvp—1
Ts.m As < 1 —exp(—e3nJ (t + 1)u)j(t) (1+27PT(vp+1))

s P+ (14+27PT(wp + 1)) , 4

= 03 t,n >

where in the final inequality we have used c3n < 1 to deduce

e (t+ 1) e (1)
2 - 2v ’

1 —exp(—esnI (t+1)) >

Finally, (11) and (11) completes the proof. O
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Lemma 11.2. Let f : R — Ry be a non-decreasing function and let k > 0 be a constant such
that > > f(n)exp(—rn) < oo. Then

Zf n) exp(— )_l—exp /f u) exp(—ku) du.

Proof. Since f is non-decreasing, hence for every n € N,

R

n+1
f(n)exp(—kn) = (K)f(n)/n exp(—ku) du < ey / f(u)exp(—ru) d

1 —exp(—
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