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Abstract

While algorithmic stability is a central tool for understanding generalization of learning
algorithms, existing high-probability guarantees typically rely on uniform boundedness or sub-
Gaussian/sub-Weibull tail assumptions, which can be overly restrictive for modern settings
with heavy-tailed or unbounded losses. We develop a stability-based framework that requires
only a finite Lp moment condition. Our first contribution is sharp concentration inequalities
for functions of independent random variables under Lp constraints, extending McDiarmid’s
bounded-differences techniques beyond the classical regime. Leveraging these results, we
derive sharp high-probability generalization bounds across a range of learning paradigms,
including empirical risk minimization, transductive regression, and meta-learning. These
guarantees show that Lp stability suffices for robust generalization even when boundedness
fails, substantially weakening the standard assumptions in the stability literature.

1 Introduction

Algorithmic stability has emerged as a fundamental tool for the theoretical analysis of machine
learning algorithms, providing a principled framework for establishing generalization bounds.
Seminal work by [9] established that uniform stability is sufficient to bound the discrepancy
between empirical and true risk for symmetric learning algorithms. Unlike complexity-based
measures such as VC-dimension [58, 8, 55, 57, 48, 47] and Rademacher complexity [4, 3, 29],
stability analysis quantifies how perturbations in training data affect the output hypothesis,
thereby providing insight into why machine learning algorithms trained on finite samples
generalize to unseen data. Subsequent work has extended these ideas to broader settings,
including stochastic optimization [23, 33, 35], federated learning [52, 39], and reinforcement
learning [53, 51]. A significant portion of this literature derives high-probability control over
generalization error via uniform stability [9, 41, 61, 10, 66] or its relaxations through distribution-
dependent surrogates such as sub-Gaussian or sub-exponential conditions [30, 42, 36, 37, 19].

Though powerful, these approaches fail to capture the complexities of modern data science and
deep learning. Recent empirical and theoretical studies [12, 44, 50, 40] highlight the inadequacy
of sub-Gaussian assumptions for data with heavy tails. Instead, these studies reveal a prevalence
of power law behavior–that is, polynomial tail in the large deviation regimes–reminiscent of the
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t-distribution. To accommodate such behavior, in this work, we introduce a further relaxation to
(Lp, β)-Lipschitz stability, which requires only a finite p-th moment rather than uniform constant
bounds or tail specifications such as sub-Gaussian or sub-Weibull conditions. Drawing on the
classical Nagaev-type inequalities [46] as a powerful alternative when exponential concentration
is unattainable, we derive novel sharp concentration bounds for generalization error and apply
them to a range of settings, including empirical risk minimization, transductive learning, and
meta-learning.

1.1 Main Contributions

Our contributions can be summarized as follows.

• In Section 2, we establish new sharp concentration inequalities for general functions of
independent random variables under Lp moment. The resulting bounds exhibit a clear
two-regime structure: a sub-Gaussian tail governing moderate deviations and a polynomial
correction capturing rare large fluctuations. Informally:

Theorem 1.1 (Theorem 2.2, informal). Let x1, ..., xn be independent random variables, and
let x′i be an independent copy of xi. Suppose there exist functions f and {Hi}ni=1 such that,
almost surely, |f(x1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ Hi(xi, x

′
i). If Hi(xi, x

′
i) has

a finite p-th moment for p ≥ 2, then for y > 0,

P(|f(x1, . . . , xn)− E[f(x1, . . . , xn)]| > y)

≲

∑n
i=1 E[|Hi|p]

yp
+ exp

(
− y2∑n

i=1 E[|Hi|2]

)
.

We also develop the result for the complementary heavy-tailed regime p ∈ (1, 2) in Theorem 2.5.
This two-regime behavior arises directly from working under weaker Lp moment assumptions
rather than bounded or sub-Weibull conditions, yielding non-asymptotic guarantees that
remain valid without exponential moments.

• Using these probabilistic tools, we derive high-probability generalization bounds for three
learning paradigms: empirical risk minimization (Section 3.1), transductive regression (Sec-
tion 3.2), and meta-learning (Section 3.3). For each setting, we formulate an appropriate
(Lp, β)-Lipschitz stability notion and obtain corresponding two-regime bounds. The transduc-
tive setting requires concentration inequalities for sampling without replacement, developed
in Theorem 3.9. Compared to bounded uniform stability, the weaker Lp framework relaxes
tail assumptions but imposes stronger decay requirements on the relevant stability notion to
achieve vanishing generalization bounds.

• Our numerical experiments confirm the sharpness of the theory and, in particular, highlight
the necessity of the polynomial term in our generalization bounds. The results clearly exhibit
the predicted transition between the sub-Gaussian and polynomial-tail regimes.

1.2 Related Work

Algorithmic Stability and Generalization. Algorithmic stability offers an algorithm-
dependent route to generalization bounds, initiated by [9] who combined uniform stability and
bounded losses via McDiarmid’s inequality [43]; later works sharpened rates [20, 21, 10, 28, 66]
and connected stability to optimization [23, 33, 35]. Since expectation bounds can mask non-
negligible probabilities of large deviations for a single learned model, high-probability guarantees
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are needed [41, 10, 63], but typically rely on bounded differences. For unbounded stability,
existing approaches either tolerate rare large deviations under high-probability boundedness
[31, 32, 61], or replace worst-case bounds by distributional surrogates such as sub-Gaussian/sub-
exponential assumptions [30, 42, 36, 37, 19], often via Efron-Stein-type inequalities [1], or provide
moment bound [64]. Another route avoids exponential moments by robustifying empirical risk
(or gradients) using robust mean estimators: Catoni-type M-estimators for robust ERM [12, 11],
median-of-means extensions [26, 34], and truncation/clipping methods such as robust gradient
descent [24], which can yield exponential-type deviation bounds under low-order moments
but modify the learning rule. Our Lp stability framework instead relaxes tail assumptions
directly, accommodating heavy-tailed regimes where exponential moments may not exist, without
changing the learning rule.

Transductive Regression. In transductive learning, the learner observes unlabeled test inputs
in advance and predicts only on this fixed set [56]. [15] provided systematic VC dimension
bounds for transductive regression, and [16] derived algorithm-dependent generalization bounds
via stability analysis. We extend this framework to the Lp setting, requiring new concentration
inequalities for sampling without replacement.

Meta-Learning. Meta-learning studies how training on past tasks improves performance on
new tasks [7, 54, 41, 25]. Theoretical work focuses on convergence [65, 27, 45] and generalization
[5, 6, 17]; see [60] for a review. Stability-based analyses were initiated by [41] and recently
advanced by [13, 18, 2, 22] under various meta-stability notions. [60] proposed uniform meta-
stability coupling task-level and within-task perturbations with high-probability bounds. Our
Lp framework generalizes these results under weaker moment assumptions.

2 Main Results

In this section, as a key technical contribution, we present sharp concentration inequalities
that substantially broaden the scope of algorithmic stability. Classical high-probability stability
bounds rely on uniform stability [9], which requires uniform boundedness of the loss, or sub-
Gaussian/sub-Weibull tail assumptions. We replace these restrictions with a single, weaker
requirement: a finite Lp moment for the one-sample perturbation. This relaxation is essential
in modern applications, such as deep learning with heavy-tailed gradients or regression over
unbounded domains, where the effect of replacing one training sample is not uniformly bounded
but can be controlled in Lp norm. Our framework thus provides a powerful theoretical tool for
analyzing generalization in learning algorithms.

2.1 Preliminaries

We first introduce the mathematical framework used throughout the paper. Let x1, . . . , xn be
independent random variables in a measurable space X , and let f : X n → R be a measurable
function. We study the concentration of f(x1, . . . , xn) around its expectation under an Lp-type
moment condition. Fix i ∈ [n] and define g = f(x1, . . . , xi, . . . , xn) and gi = f(x1, . . . , x

′
i, . . . , xn),

where x′i is an independent copy of xi. Assume that for some nonnegative measurable functions
Hi : X 2 → R+, |g − gi| ≤ Hi(xi, x

′
i). (1)

Each Hi is deterministic; randomness arises only through the pair (xi, x
′
i). We interpret Hi as

measuring the sensitivity to resampling the i-th coordinate: the one-point perturbation bound
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(1) is a Lipschitz-type condition with respect to this coordinate-wise distance, consistent with
viewing stability assumptions as Lipschitz continuity in an appropriate metric structure [37].

When Hi is a metric (or is dominated by one), it induces the ℓ1 product metric on X n,
ρ(n)(x, x′) :=

∑n
i=1Hi(xi, x

′
i), yielding a geometric interpretation: modifying a single coordinate

incurs costHi(xi, x
′
i), while multi-coordinate perturbations accumulate additively, as for Lipschitz

functions on product spaces [30]. In unbounded settings, (X , Hi) may have infinite diameter, so
we instead quantify the distribution-dependent scale via an independent pair (xi, x

′
i):

∥g − gi∥p < ∥Hi(xi, x
′
i)∥p <∞.

This Lp-diameter is analogue of Orlicz/sub-Weibull diameters, except we require only a finite
p-th moment rather than a ψα-norm bound [30, 37]; see also Remark 2.1. We refer to this as Lp-
Lipschitz stability, which replaces bounded differences with an integrable, distribution-dependent
surrogate.

Remark 2.1. The ψα Orlicz norm is defined as

∥X∥ψα = inf{θ > 0 : E[exp(|X|/θ)α] ≤ 2}. (2)

This class includes sub-exponential (α = 1) and sub-Gaussian (α = 2) variables, but still requires
an exponential moment, implying that all Lp moments exist and scale as O(p1/α). In contrast, we
assume only a finite Lp moment for a fixed p, which is strictly weaker. For instance, heavy-tailed
variables such as Pareto distributions with shape parameter p can have finite Lp moments yet
fail every sub-Weibull condition due to the nonexistence of the moment-generating function.
Therefore, our framework substantially weakens the tail requirements on the stability variable Hi,
yielding high-probability guarantees in regimes where sub-Weibull-based stability is inapplicable.

2.2 Concentration Inequalities

With Lp-Lipschitz stability in place, we now state our main concentration bounds. We begin
with the case p ≥ 2, where the tail behavior is captured by a hybrid inequality combining a
polynomial (moment) term with a sub-Gaussian term. This form is well suited to settings where
the algorithm is typically stable but may exhibit occasional large deviations due to heavy-tailed
data, contamination, or irregular loss landscapes.

Theorem 2.2. Let x1, . . . , xn be independent random variables taking values in a measurable
space X , and let f : X n → R be a measurable function such that for some nonnegative measurable
functions Hi : X 2 → R+, (1) holds. If ∥Hi(xi, x

′
i)∥p <∞ for some p ≥ 2 and all i, then for all

z > 0,

P(|f(x1, x2, . . . , xn)| − E[f(x1, x2, . . . , xn)]| > z)

≤c1
∑n

i=1 E|Hi(xi, x
′
i)|p

zp
+ 2 exp

{
− c2z

2∑n
i=1 E|Hi(xi, x′i)|2

}
, (3)

where c1 = 3(1 + 2/p)p and c2 = 2((p+ 2)2ep)−1 depend only on p.

Remark 2.3. Theorem 2.2 admits an equivalent high-probability form. For any δ ∈ (0, 1), with
probability at least 1− δ,∣∣f(x1, . . . , xn)− Ef(x1, . . . , xn)

∣∣
≤c−1/2

2

√
log

4

δ

(
n∑
i=1

∥Hi(xi, x
′
i)∥22

)1/2

+ (2c1)
1/p δ−1/p

(
n∑
i=1

∥Hi(xi, x
′
i)∥pp

)1/p

. (4)
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Using
(∑n

i=1 ∥Hi∥pp
)1/p ≤ n1/pmaxi ∥Hi∥p, the second term in (4) simplifies to a max-type

bound: ∣∣f(x1, . . . , xn)− Ef(x1, . . . , xn)
∣∣

≤c−1/2
2

√
log

4

δ

(
n∑
i=1

∥Hi(xi, x
′
i)∥22

)1/2

+ (2c1)
1/p n1/pδ−1/p max

1≤i≤n
∥Hi(xi, x

′
i)∥p.

The deviation thus decomposes into a sub-Gaussian term governed by
∑

i ∥Hi(xi, x
′
i)∥22 and a

heavy-tail correction controlled by the p-th moments.

Remark 2.4. We now compare Theorem 2.2 with several representative concentration results. Con-
sidering Hi as a metric function, define the sub-Weibull diameter [37] ∆α(Xi) = ∥Hi(xi, x

′
i)∥ψα ,

where ∥ · ∥ψα is the Orlicz norm in (2). [30, Theorem 1] shows that if f is 1-Lipschitz function
and sub-Gaussian diameter ∆2(Xi) <∞, then for any z > 0,

P(|f − Ef | > z) ≤ 2 exp

(
− z2

2
∑n

i=1∆
2
2(Xi)

)
.

[42, Theorem 11] proves that if f is L-Lipschitz function and sub-exponential diameter ∆1(Xi) <
∞, then a one sided bound holds for any z > 0,

P(f − Ef > z) ≤ exp

(
− z2

4eL2
∑n

i=1∆
2
1(Xi) + 2emaxi∆2

1(Xi)z

)
.

More generally, [37, Theorem 2.2] derives sub-Weibull bounds. If 0 < α ≤ 1, then

P(|f − Ef | > z) ≤ exp

(
−cα

z2∑n
i=1 ∥Hi(xi, x′i)∥2ψα

)
+ exp

(
− zα

max1≤i≤n ∥Hi(xi, x′i)∥αψα

)
.

If α > 1, let 1/α∗ + 1/α = 1, then we have

P(|f − Ef | > z) ≤ exp

(
−cα

z2∑n
i=1 ∥Hi(xi, x′i)∥2ψα

)
+ exp

(
− zα

(
∑n

i=1 ∥Hi(xi, x′i)∥α
∗
ψα

)α/α∗

)
.

In contrast, Theorem 2.2 yields a hybrid bound with a sub-Gaussian component and a polynomial
term. For moderate deviations (small z), the second sub-Gaussian term in (3) dominates,
matching McDiarmid-type tail behavior and agreeing with [30, 42, 37] up to constants. For large
deviations (large z), the first polynomial term dominates, reflecting that our assumptions only
impose finite Lp moments; correspondingly, the tail decays polynomially rather than sub-Weibull.
Our simulations illustrate this transition between the sub-Gaussian and heavy-tail regimes in
two application settings.

We also provide an accompanying results when only lower moments exist.

Theorem 2.5. Let x1, . . . , xn be independent random variables taking values in a measur-
able space X , and let f : X n → R be a measurable function. For each i ∈ [n], define
g = f(x1, . . . , xi−1, xi, xi+1, . . . , xn) and gi = f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn), where x′i is an

independent copy of xi. Assume there exist nonnegative measurable functions Hi : X 2 → R+,
such that

|g − gi| ≤ Hi(xi, x
′
i), i = 1, . . . , n,

with ∥Hi(xi, x
′
i)∥p <∞ for some 1 < p < 2 and all i. Then, for all Q ≥ 1 and z > 0,

P (|f(x1, . . . , xn)− E(x1, . . . , xn| > z)

≤
n∑
i=1

P(|Hi(xi, x
′
i)| >

z

Q
) + 2

(
eQp−1

∑n
i=1 E|Hi(xi, x

′
i)|p

zp

)Q
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Remark 2.6. Theorem 2.5 is essentially sharp for polynomially-tailed variables. Consider n = 1
with H1(x1, x

′
1) ∼ t2 (Student’s t with ν = 2 degrees of freedom). Then ∥H1(x1, x

′
1)∥p <∞ for

every 1 < p < 2.

The t2 distribution has the closed-form tail

P(|H1(x1, x
′
1)| >

z

Q
) = 1− z/Q√

z2/Q2 + 2
∼ 1

z2
(z → ∞),

so the first term in the bound is of order z−2. For any fixed Q > 2/p, the second term satisfies
O(z−pQ) = o(z−2). Hence the bound yields an O(z−2) tail rate, matching the true exponent of
the t2 distribution.

In particular, under only an Lp increment condition with p < 2, one cannot generally expect
sub-Gaussian or sub-exponential decay. Compared with the naive Markov bound based solely
on ∥H1∥p, which gives order z−p, Theorem 2.5 recovers the correct z−2 rate in this canonical
heavy-tailed example.

3 Applications

3.1 Empirical Risk Minimization

In this subsection, we illustrate how our concentration results yield high-probability generalization
bounds in the standard i.i.d. setting. Let X and Y be the input and output spaces, and let
Z = X × Y. Consider a training sample

S = {z1 = (x1, y1), . . . , zm = (xm, ym)} ∼ Dm,

drawn i.i.d. from an unknown distribution D. A learning algorithm is a map A : Zm → F ,
producing a hypothesis AS ∈ F ⊆ Y. For simplicity, we assume A is deterministic and
permutation-invariant in S. We also adopt standard measurability assumptions.

• S\i, the leave-one-out sample of size m− 1 obtained by removing the i-th observation:

S\i = S \ zi = {z1, . . . , zi−1, zi+1, . . . , zm}.

• Si, the replacement sample of size m where zi is replaced by an independent draw z′i ∼ D:

Si = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zm}.

All expectations and probabilities are taken with respect to the data distribution D. We use
subscripts to specify the variables of integration: ES [·] denotes the expectation over the training
sample S ∼ Dm, while Ez[·] denotes the expectation over a single test instance z ∼ D.

To measure the discrepancy between a prediction f(x) and the ground truth y, we use a
nonnegative cost function c : Y × Y → R+. For any hypothesis f and sample z = (x, y), define
the loss ℓ(f, z) = c(f(x), y). Given a training sample S, the population risk of the learned
hypothesis AS is R(A,S) = Ez[ℓ(AS , z)], where z ∼ D is an independent test point. Since D is
unknown, R(A,S) cannot be computed directly. We therefore compare it to empirical surrogates:
the empirical risk and leave-one-out risk, defined respectively as

Remp(A,S) =
1

m

m∑
i=1

ℓ(AS , zi), Rloo(A,S) =
1

m

m∑
i=1

ℓ(AS\i , zi).
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When the algorithm A and sample S are clear from context, we write simply R,Remp, and Rloo.

The classical route to high-probability generalization bounds typically relies on deterministic
uniform stability : the pointwise change in loss under a one-sample perturbation is assumed
to be bounded, often together with an almost surely bounded loss. These conditions make
McDiarmid-type concentration inequalities straightforward, but they are too restrictive for many
modern problems, such as regression with unbounded responses or heavy-tailed noise. Leveraging
Theorem 2.2, we instead adopt an (Lp, β)-Lipschitz stability framework.

Assumption 3.1 ((Lp, β)-Lipschitz stability). An algorithm A trained on set S = {z1, . . . , zn}
is β-Lipschitz stable if the function f(z1, . . . , zn, z) = ℓ(AS , z) with respect to the loss ℓ is
β-Lipschitz, and with respect to a measurable function H : Z × Z 7→ R+ such that for all
i ∈ {1, . . . ,m},

|ℓ(AS , z)− ℓ(ASi , z)| ≤ βH(zi, z
′
i),

where ∥H(z)∥p <∞ for some p > 2, and the norm ∥ · ∥p is computed with respect to z ∼ D.

Assumption 3.1 significantly generalizes the Lipschitz stability notion of [30, 37], and consequently
also generalizes the uniform stability of [9], which in turn implies hypothesis stability. It can
also be construed as generalizing the notions of argument stability [38, 59], random uniform
stability [49].

Assumption 3.2. There exists a measurable function G : Z × Z 7→ R+, such that for all
S = {z1, . . . , zm} ∈ Dm, z, z′ ∼ D,

|ℓ(AS , z)− ℓ(AS , z
′)| ≤ β′G(z, z′), β′ > 0,

where ∥G(z, z′))∥p < ∞ for some p ≥ 2, and the norm ∥ · ∥p is computed with respect to
z, z′ ∼ D2.

Combining these assumptions with Theorem 2.2 yields the following high-probability generaliza-
tion bounds.

Theorem 3.3. Suppose learning algorithm A satisfies Assumption 3.1 and the loss function
ℓ(AS , z) satisfies Assumption 3.2. Then, for any set S with |S| = m ≥ 1 and any y > 0, the
following two bounds hold:

P(|R−Remp| > y + βEH(z, z′))

≤ c1
mβpE|H(z, z′)|p + (β′)pE[|G(z, z′)|p]/mp−1

yp
+ 2 exp

(
− c2y

2

β2mE|H(z, z′)|2 + (β′)2

m E[|G(z, z′)|2

)
,

and,

P(|R−Rloo| > y +Rm −Rm−1)

≤ c3
mβpE[|H(z, z′)|p] + (β′)pE[|G(z, z′)|p]/mp−1

yp
+ 2 exp

(
− c4y

2

mβ2E[|H(z, z′)|2] + (β′)2

m E[|G(z, z′)|2]

)
,

where c1, c2, c3, c4 depend only on p, and Rm := ES∼Dm,z∼D[ℓ(AS , z)] = ES∼Dm [R(A,S)].

Remark 3.4. We briefly recall classical generalization bounds for uniformly stable algorithms. A
sharp high-probability result is Corollary 8 of [10], which assumes deterministic uniform stability
with constant β (i.e., Assumption 3.1 with H ≡ 1) and almost sure bounded loss 0 ≤ ℓ ≤ L. It
states that, for any δ ∈ (0, 1), with probability at least 1− δ,

|R−Remp| ≲ β logm log(1/δ) + L

√
log(1/δ)

m
.



8

This bound is informative only when β = o(1); moreover, it is tight (up to logarithmic factors)
in the regime β ≲ m−1/2, which yields the canonical m−1/2 rate. In contrast, Theorem 3.3
allows the stability increment to be random and data-dependent (through H(zi, z

′
i)) and does

not require bounded loss; it suffices that H and G have finite p-th moments for some p ≥ 2. In
particular, with probability at least 1− δ,

|R−Remp| ≲
(
β∥H∥pm1/p + β′∥G∥pm−(1−1/p)

)
δ−1/p

+

(
β∥H∥2

√
m+ β′

∥G∥2√
m

)
log

1

δ
+ β∥H∥1.

For the bound to vanish, one needs ∥H∥p = O(1), ∥G∥p = O(1) and (up to logarithmic factors)
β ≪ m−1/2, β′ ≪

√
m; smaller δ further strengthens the required decay in β, β′ through the

factor δ−1/p. In this sense, moving from bounded uniform stability to weaker (Lp, β)-Lipschitz
stability trades assumptions for stronger Lipschitz-decay requirements.

3.2 Transductive Regression Algorithms

We consider the transductive learning setting [16], where the learner is given a fixed finite
population X of size N = m + u. A training set S of m labeled samples is drawn uniformly
at random without replacement from X ; the remaining u points form the unlabeled test set
T := X \ S. We denote this random partition by X ⊢ (S, T ).

The goal is to predict the labels of the test points in T using only the labeled data in S. Unlike
inductive learning, which aims to learn a function that generalizes to arbitrary future inputs,
transductive learning only targets a fixed, known set of test inputs. Access to the unlabeled set
T during training allows the algorithm to exploit the geometry or manifold structure of the test
set to regularize learning and improve prediction.

Let ℓ(h, z) ≥ 0 be a nonnegative loss measuring the error of a hypothesis h on sample z = (x, y);
for regression, a canonical choice is the squared loss ℓ(h, z) = (h(x)− y)2. Define the training
and test (transductive) risks by

R̂(h) =
1

m

∑
z∈S

ℓ(h, z), R(h) =
1

u

∑
z∈T

ℓ(h, z). (5)

Our goal is to control the generalization gap R(h)− R̂(h) via stability properties of the algorithm.
Classical analyses often assume uniform β-stability, which imposes bounded differences uniformly
over all partitions. To accommodate heavy-tailed losses or unbounded domains, we instead
adopt an (Lp, β)-Lipschitz stability notion.

Assumption 3.5 (Transductive (Lp, β)-Lipschitz stability). Let A be a transductive learning
algorithm. For a partition X ⊢ (S, T ), let h be the hypothesis returned by A, and let h′ be the
hypothesis returned for a modified partition X ⊢ (S′, T ′). We say A is uniformly Lp-Lipschitz
stable with respect to the cost function ℓ if there exist nonnegative measurable functions Hi

such that, whenever (S′, T ′) is obtained from (S, T ) by swapping exactly one point xi ∈ S with
one point xm+j ∈ T , then for all x ∈ X ,

|ℓ(h, x)− ℓ(h′, x)| ≤ βH(xi, xm+j),

and ∥H(xi, xm+j)∥p <∞ for some p ≥ 2.

Remark 3.6. As with Assumption 3.1, we do not require a deterministic control. To see this, view
ℓ(h, x) = f(x1, . . . , xm, x) and ℓ(h

′, x) = f(x1, . . . , xi−1, xm+j , xi+1, . . . , xm, x); the assumption
above is then equivalent to the function f : Xm+1 → R being (Lp, β)-Lipschitz Stable.
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Assumption 3.7 (Lp-bounded hypothesis class). A hypothesis class H is Lp-bounded with
respect to ℓ if there exists a measurable function G such that for all h ∈ H and all x, x′ ∈ X ,

|ℓ(h, x)− ℓ(h, x′)| ≤ β′G(x, x′), β′ > 0,

where ∥G(x, x′)∥p <∞ for some p ≥ 2, and the norm ∥ ·∥p is computed with respect to x, x′ ∼ D.

A key technical challenge in transduction is that S = {x1, . . . , xm} is sampled without replacement
from the finite population X , which induces dependencies among the training points and precludes
applying concentration inequalities for independent variables directly. Prior work addresses
this using McDiarmid-type inequalities tailored to sampling without replacement, typically
under strict bounded-differences assumptions. In our (Lp, β)-Lipschitz stability regime, we
develop corresponding extensions of Theorem 2.2 that accommodate the transductive sampling
dependence while requiring only finite Lp moments.

Theorem 3.8. Let X be a finite set with |X| = N = m+ u. Let xm1 = (x1, . . . , xm) be sampled
uniformly without replacement from X and let ϕ : Xm → R be a symmetric measurable function.
Assume that for each i ∈ [m] there exists a measurable function H : X × X → R such that
for all (x1, . . . , xm) ∈ Xm and all x′i ∈ X, where x′i is an independent copy of xi, defining
φ = ϕ(x1, . . . , xi−1, xi, xi+1, . . . , xm) and φi = ϕ(x1, . . . , xi−1, x

′
i, xi+1, . . . , xm), we have

|φ− φi| ≤ H(xi, x
′
i).

Suppose that for some p ≥ 2, ∥H(x, x′)∥p <∞ for all i ∈ [m]. Then for all y > 0,

P(|φ− Eφ| > y) ≤ c1
Vp
yp

+ 2 exp
(
− c2

y2

V2

)
,

where

Vp =
up

p− 1

(
1

(u− 1
2)
p−1

− 1

(m+ u− 1
2)
p−1

)
E|H(x, x′)|p,

V2 =
mu

(m+ u− 1/2)(1− 1/(2max{m,u}))
E|H(x, x′)|2,

and c1 = 3(1 + 2/p)p and c2 = 2/((p+ 2)2ep) are some constants depending only on p.

We now apply Theorem 3.8 to study stability-based generalization for transductive regression.
Our target is the generalization gap between the transductive risk and the training risk, which
defined as ϕ(S) := R(S)−R̂(S). By controlling |Eϕ(S)| and the one-swap increment |ϕ(S)−ϕ(S′)|,
where S and S′ differ in exactly one point, we can invoke Theorem 3.8 to conclude the following
result.

Theorem 3.9. Let H be an Lp-bounded hypothesis class and let A be a symmetric transductive
(Lp, β)-Lipschitz stability algorithm satisfying Assumption 3.5. Let h be the hypothesis returned
by A for a random partition X ⊢ (S, T ). Then for any y > 0, we have

P
(
R(h)− R̂(h) ≥ y + βEH(xi, x

′
i)
)
≤
c1V

′
p

yp
+ exp

(
− c2y

2

V ′
2

)
,

where

V ′
p =

up

p− 1

(
1

(u− 1/2)p−1
− 1

(m+ u− 1/2)p−1

)
E
∣∣∣2βH(x, x′) +

∣∣∣1
u
− 1

m

∣∣∣β′G(x, x′)∣∣∣p,
V ′
2 =

mu

(m+ u− 1/2)(1− 1/(2max{m,u}))
E
∣∣∣2βH(x, x′) +

∣∣∣1
u
− 1

m

∣∣∣β′G(x, x′)∣∣∣2,
and the constants c1 = 2(1 + 2/p)p and c2 = 2/((p+ 2)2ep) depend only on p.
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Remark 3.10. In Appendix § B.2, we extend Theorems 3.8 and 3.9 to allow coordinate-dependent
control through functions Hi(xi, x

′
i) as in Assumption 3.5. Theorem 3.9 shows that, with

probability at least 1− δ,

R(h)− R̂(h) ≲
√
um
(
β∥H∥2 +

|u−m|
um

β′∥G∥2
)√

log
1

δ

+ (um)
1
p

(
β∥H∥p +

|u−m|
um

β′∥G∥p
)
δ
− 1

p + β∥H∥1.

For comparison, under uniform stability with constant β and almost surely bounded loss
0 ≤ ℓ ≤ L, [16] show that with probability at least 1− δ,

R(h)− R̂(h) ≲ β +
(
β +

L2(m+ u)

mu

)√
m

√
log

1

δ
.

To achieve vanishing bounds, their result, with significantly stronger assumptions, requires
β ≪ m−1/2, whereas ours requires faster decay β ≪ (um)−1/2 with ∥H∥p = O(1).

3.3 Meta-Learning

Consider a (possibly randomized) meta-learning algorithm A acting on a meta-sample S =
{S1, . . . ,Sm}, where each task dataset Sj = {z1j , . . . , znj } is drawn independently. Specifically,
task distributions D1, . . . ,Dm are sampled i.i.d. from an unknown meta-distribution µ over a
measurable space Z, and for each j, the samples z1j , . . . , z

n
j are drawn i.i.d. from Dj . Given S,

the meta-learner outputs a task-level learning algorithm A(S), which, when trained on a new
task dataset S ∼ Dn with D ∼ µ, produces a model A(S)(S) ∈ P, where P denotes the model
space. We evaluate a model P ∈ P on a test point z ∈ Z via a loss function ℓ : P × Z → R+.

In the context of meta-learning, the empirical meta-risk of a meta-learning algorithm A, evaluated
on the meta-sample S, is given by

R(A(S),S) =
1

mn

m∑
j=1

n∑
i=1

ℓ(A(S)(Sj), zij), (6)

and the population meta-risk is

R(A(S), µ) = ED∼µE(S,z)∼Dn+1ℓ(A(S)(S), z). (7)

In order to relate the empirical meta-risk (6) and the population meta-risk (7), we impose
meta-stability assumptions. We first introduce neighboring datasets. For a task dataset
S = {z1, . . . , zn} ∼ Dn and index i ∈ [n], let S(i) = {z1, . . . , zi−1, zi

′
, zi+1, . . . , zn}, where

zi
′ ∼ D is an independent copy of zi. For a meta-sample S and indices j ∈ [m], i ∈ [n], define

the neighboring meta-sample S(j,i) = {S1, . . . ,Sj−1,S(i)
j ,Sj+1, . . . ,Sm}, so that S and S(j,i) differ

only by replacing zij with an i.i.d. copy zi
′
j ∼ Dj . We write S\i = S \ {zi} and S\j = S \ Sj .

Assumption 3.11. The meta-learning algorithm A satisfies the following three stability condi-
tions.

(i) Meta-stability across training tasks. There exists a measurable function H : Z × Z → R+

with ED∼µE
z,z′

i.i.d.∼ D
[H(z, z′)]p <∞ for some p ≥ 2 such that for all j ∈ [m] and i ∈ [n],

|ℓ(A(S)(S), z)− ℓ(A(S(j,i))(S), z)| ≤ βH(zij , z
i′
j ), (8)
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(ii) Within-task stability. There exists a measurable function G : Z × Z → R+ with

ED∼µE
z,z′

i.i.d.∼ D
|G(z, z′)|p′ <∞

for some p′ > 2 such that for all i ∈ [n],

|ℓ(A(S)(S), z)− ℓ(A(S)(S(i)), z)| ≤ β′G(zi, zi
′
), (9)

(iii) Test-sample stability. There exists a measurable function M : Z × Z → R+ with
ED∼µE

z,z′
i.i.d.∼ D

|M(z, z′)|p′′ <∞ for some p′′ > 2 such that for all i ∈ [n],

|ℓ(A(S)(S), z)− ℓ(A(S)(S), z′)| ≤ β′′M(z, z′), (10)

Without loss of generality, we take p′ = p′′ = p; otherwise, one can work with p ∧ p′ ∧ p′′.
Remark 3.12. We contrast Assumption 3.11 with the closely related stability assumptions of
[41]. First, Assumption 3.11 replaces almost-sure bounded stability gaps by a finite Lp-moment
requirement. More importantly, part (i) is strictly weaker: [41] perturbs the meta-sample by
replacing an entire task with an i.i.d. copy, whereas we replace only a single within-task sample
among the m tasks in S. This smaller, more realistic perturbation yields a more verifiable
stability condition, yet remains sufficient for sharp high-probability bounds.

Theorem 3.13. Let µ denote the task distribution. Given a meta-sample S and a meta-algorithm
A, recall the empirical and population meta-risks R(A(S), S) and R(A(S), µ) from (6) and (7)
respectively. Suppose A satisfies Assumption 3.11. Then, for all y > 0 it follows that

P
(
R(A(S), µ)−R(A(S), S) ≥ y + E[H +G]

)
≤c1

mnE[|βH|p + nm−(p−1)E|β′G|p + (mn)−(p−1)E|β′′M|p

yp

+exp

(
− c2y

2

mnE|βH|2 + nm−1E|β′G|2 + (mn)−1E|β′′M|2

)
,

where E is taken with respect to z, z′
i.i.d.∼ D, D ∼ µ, and c1, c2 are constants solely depending on

p.

Remark 3.14. Theorem 3.13 admits an equivalent high-probability form: for any δ ∈ (0, 1), with
probability at least 1− δ,

R(A(S), µ)−R(A(S), S) ≲ E[βH + β′G] + δ
− 1

p
(
(mn)

1
pβ∥H∥p + n

1
pm

1
p
−1
β′∥G∥p + (mn)

1
p
−1∥M∥p

)
+
√
log(1/δ)

(√
mnβ∥H∥2n

1
2m− 1

2β′∥G∥2 + (nm)−
1
2 ∥M∥2

)
.

For comparison, under uniform meta-stability with constant β, and almost surely bounded loss
0 ≤ ℓ ≤ L, [60] show that with probability at least 1− δ,

R(A(S), µ)−R(A(S), S) ≲ β log(mn) log(1/δ) + L
√
log(1/δ)/(mn).

To achieve vanishing bounds, their result requires β ≪ (log(mn))−1, whereas ours requires
faster decay ∥H∥q = O(1), ∥G∥q = O(1), ∥M∥q = O(1), β ≪ (mn)−1/2, β′ ≪ n−1/qm1−1/q, and
β′′ ≪ (mn)1−1/q for q = 2, p. The qualitative message mirrors the supervised case: replacing
bounded uniform stability with weaker (Lp, β)-Lipschitz stability relaxes tail assumptions, but
requires stronger decay of the stability moments (in m,n and δ) for the generalization bound to
vanish.
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4 Numerical experiments

In this section, we provide an empirical study highlighting the tightness of our theoretical bounds.
Consider i.i.d. observations S := {zi = (xi, yi)}mi=1 ∈ Rd × R from the linear model Y = Xβ + ε,

where the errors satisfy ε
d
= U

−1/ν
1 − U

−1/ν
2 with U1, U2

i.i.d.∼ U [0, 1]. Note that here p = ν/2.
We set d = 5, β = (1, 1, . . . , 1)⊤, and vary m ∈ {500, 1000}, and ν = {2.2, 4.4}. If the bound in

Theorem 3.3 is sharp, the ratio p(y) :=
P(|R−Remp|>y)

P(|R−Remp|>C0y)
should stabilize near C

ν/2
0 for large y.

We set C0 = 1.5. To incorporate stability in our analysis, we use ridge regression for empirical
risk minimization with regularization parameter λ = 1.0. Tail probabilities are empirically
estimated via 50, 000 Monte Carlo draws. Figure 1 shows that p(y) exhibits initial exponential

(a) ν = 2.2 (b) ν = 4.4

Figure 1: Plot of p(y) versus y; both the curves stabilize around C
ν/2
0 for large y.

growth before slowing down and stabilizing near C
ν/2
0 , further vindicating the importance of the

polynomial-in-y term in Theorem 3.3. For larger ν (e.g., ν = 4.4), the Gaussian tail dominates
the polynomial tail more strongly at smaller values of y. Consequently, p(y) may exceed the

threshold C
ν/2
0 initially, before stabilizing in the large-y regime. This behavior confirms the

tightness of our results. Additional details and experiments for transductive learning appear in
Appendix § C.

5 Conclusion and Future Works

In this work, we provide a systematic treatment of stability analysis under weakened Lp assump-
tions by establishing a new large-deviation inequality, which may be of independent interest.
Theorems 2.2 and 2.5 broaden the scope of stability-based generalization by accommodating
settings where the stability increment admits either higher-order finite moments (p ≥ 2) or only
lower-order moments (p ∈ (1, 2)). We develop three representative applications in Section 3, and
provide supporting empirical evidence for the sharpness of our bounds in Section 4.

Our results also suggest several natural directions for future research: (i) extending the analysis to
dependent data (e.g., Markovian sampling) [62, 59]; (ii) extending the framework to unsupervised
learning problems [14]; and (iii) establishing matching lower bounds in specific settings to formally
quantify when the polynomial correction term is unavoidable under finite-moment assumptions.
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Appendices

In this appendix, we provide the proofs of our technical results and additional experimental
evidence behind the tightness of our theoretical results. In particular, §A collects the proofs
of our main technical results Theorem 2.2 and 2.5. §B.1, §B.2 and §B.3 contains the proofs of
results in §3.1, §3.2 and §3.3 respectively. Finally, we provide some additional simulation results
in §C.

A Proofs of Theorems in Section 2

A.1 Technical lemmas

Lemma A.1. Let X ∈ X be a random variable and a function g : X → R satisfying P(g(X) >
b) = 0, b > 0, and for any p ≥ 2

∥g(X)∥p <∞.

Then for any positive ϕ,

logE exp{ϕg(X)} ≤ ϕEg(X) +
epϕ2

2
E[g(X)2] +

eϕb − 1− ϕb

bp
E[g(X)p]× I{ϕ > p/b}. (11)

Proof of Lemma A.1. By Taylor expansion,

E exp{ϕg(X)} = 1 + ϕEg(X) +

∫
g(X)≤b

(eϕg(X) − 1− ϕg(X))dF (g(X)).

Consider 2nd-order Taylor formula with integral remainder,

ex = 1 + x+ x2
∫ 1

0
(1− s)esxds.

Then for any x ≤ t, when s ∈ [0, 1], sx ≤ x ≤ t, we have

ex − 1− x = x2
∫ 1

0
(1− s)esxds ≤ x2

∫ 1

0
(1− s)etds =

etx2

2
.

Therefore, suppose that ϕ ≤ p/b, then∫
g(X)≤b

(eϕg(X)−1−ϕg(X))dF (g(X)) ≤
∫
g(X)≤p/ϕ

(eϕg(X)−1−ϕg(X))dF (g(X)) ≤ epϕ2

2
E[g(X)2].

(12)
Then, for ϕ > p/b,∫

g(X)≤b
(eϕg(X) − 1− ϕg(X))dF (g(X))

≤
∫
g(X)≤p/ϕ

(eϕg(X) − 1− ϕg(X))dF (g(X)) +

∫
g(X)>p/ϕ

eϕg(X) − 1− ϕg(X)

g(X)p
g(X)pdF (g(X)).(13)

Since eϕg(X)−1−ϕg(X)
g(X)p increase w.r.p to g(X) for g(X) > p/ϕ, thus∫

g(X)>p/ϕ

eϕg(X) − 1− ϕg(X)

g(X)p
g(X)pdF (g(X))

≤e
ϕb − 1− ϕb

bp

∫
g(X)>p/ϕ

g(X)pdF (g(X)) ≤ eϕb − 1− ϕb

bp
E[g(X)p].
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From Equation (12) and Equation (13), with log x ≤ x−1, we obtain the bound in Equation (11).

A.2 Proof of Theorem 2.2

Proof of Theorem 2.2. Let Fk = (. . . , Xk−1, Xk) and define the projection operator Pi(·) =
E(·|Fi)−E(·|Fi−1). For simplicity of notation, denote ∆n = f(X1, X2, . . . , Xn)−Ef(X1, X2, . . . , Xn).
Then, we can obtain the following decomposition,

|∆n| = |
∑
i≤n

Pi(g)| = |
∑
i≤n

E(g − gi|Fi)|,

where g = f(X1, X2, . . . , Xi−1, Xi, Xi+1, . . . , Xn) and gi = f(X1, X2, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)

is the coupled version of g obtained by replacing Xi by an i.i.d. copy X ′
i.

For any y = pz/(p+ 2) and i ∈ [n], define the truncated version of P̃i(g) = Pi(g)1{|Pi(g)| ≤ y}.
Consequently, we can obtain the following decomposition

P(|∆n| > z) ≤ P(
∑
i≤n

|P̃i(∆n)| ≥ z) +

n∑
i=1

P(|Pi(∆n)| ≥ y) =: I1 + I2. (14)

For I2 in (14), by Markov inequality, one derives

I2 ≤
∑n

i=1 E|Pi(g)|p

yp
≤
∑n

i=1 E|Hi(Xi, X
′
i)|p

yp
,

where the second inequality comes from

E|Pi(g)|p = E|E(g − gi|Fi)|p ≤ E[E(|g − gi|p|Fi)] = E|g − gi|p ≤ E|Hi(Xi, X
′
i)|p.

For the term I1, we need to control the following moment generating function

M(t) = E exp

{
t

n∑
h=1

P̃i(g)

}
, t > 0.

To that end, observe that for each h ∈ [n], |P̃i(g)| ≤ y, by Lemma A.1, we have

E{exp(tP̃i(g))|Fi−1} ≤ 1 +
ept2

2
E[|P̃i(g)|2|Fi−1] +

exp(ty)− 1− ty

yp
E[|P̃i(g)|p|Fi−1]× 1{t > p/y}

≤ 1 +
ept2

2
E|Hi(Xi, X

′
i)|2 +

exp(ty)− 1− ty

yp
E|Hi(Xi, X

′
i)|p × 1{t > p/y},

where the upper bound above is independent of Fi−1. Therefore, iterated from 1 to n, we can
obtain that

M(t) ≤
n∏
i=1

(
1 +

ept2

2
E|Hi(Xi, X

′
i)|2 +

exp(ty)− 1− ty

yp
E|Hi(Xi, X

′
i)|p × 1{t > p/y}

)

≤ exp

(
1

2
ept2

n∑
i=1

E|Hi(Xi, X
′
i)|2 +

exp(ty)− 1− ty

yp

n∑
i=1

E|Hi(Xi, X
′
i)|p × 1{t > p/y}

)
.
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By Chernoff’s bound, it is obvious that

P(|∆n| > z) ≤
∑n

i=1 E|Hi(Xi, X
′
i)|p

yp

+ 2 exp

(
− tz +

1

2
ept2

n∑
i=1

E|Hi(Xi, X
′
i)|2 +

exp(ty)− 1− ty

yp

n∑
i=1

E|Hi(Xi, X
′
i)|p × 1{t > p/y}

)
:=

∑n
i=1 E|Hi(Xi, X

′
i)|p

yp
+ 2I3.

Then, for simplicity of representation, denoteM2 =
∑n

i=1 E|Hi(Xi, X
′
i)|2,Mp =

∑n
i=1 E|Hi(Xi, X

′
i)|p.

Define

h(t) =
ept2

2
M2 − tz,

h1(t) =
ept2

2
M2 − αtz, 0 < α < 1,

h2(t) =
exp(ty)− 1− ty

yp
Mp − γtz, γ = 1− α.

By taking derivative of h1(t) and h2(t) w.r.p to t, then we can get

t1 = αz/ep M2, t2 =
1

y
log(γzyp−1/Mp + 1),

where h′1(t1) = 0 and h′2(t2) = 0, which implies that h1(t) and h2(t) reaches their minimum at t1
and t2 separately.

First we examine the case when t1 ≤ p/y, we can conclude that

I3 ≤ exp

{
− α2z2

2epM2

}
.

Then, for t2 > t1 ≥ p/y, plug-in t = t1, I3 becomes

I3 ≤ exp{h1(t1) + h1(t2)} ≤ exp{h1(t1)} = exp

{
− α2z2

2epM2

}
,

where the second inequality comes from h2(t2) < h2(t1) < h2(0) < 0 since h2 is convex and t2 is
the minimizer of f2.

Consider when t1 > t2 > p/y

h1(t2) + h2(t2) < t2

(
epM2t1

2
− z

)
+

(et2y − 1)Mp

yp

=
γz

y
− t2(1− α/2)z

=
γz

y
− αzt2

2
− γzt2

<
(
γ − pα

2

) z
y
− γzt2,
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which lead to

I3 ≤ exp

{(
γ − tα

2

)
z

y
− γ

z

y
log

(
γzyp−1

Mp
+ 1

)}
.

It now remains to examine when t1 > p/y ≥ t2, we only need to consider the case when plug in
t = p/y

h(p/y) <
epM2

2

p2

y2
− p

y
z

<
p

y

(
epM2

2
t1 − z

)
=
p

y

(αz
2

− z
)

< −γz p
y
− αzp

2y

< −γzt2 −−αzp
2y

,

thus we get

I3 ≤ exp

{(
γ − tα

2

)
z

y
− γ

z

y
log

(
γzyp−1

Mp
+ 1

)}
.

Combining all the result above, since either

I3 ≤ exp

{
− α2z2

2epM2

}
,

or

I3 ≤ exp

{(
γ − tα

2

)
z

y
− γ

z

y
log

(
γzyp−1

Mp
+ 1

)}
,

holds for all z > 0, we have

P(|∆n| > z) =

∑n
i=1 E|Hi(Xi, X

′
i)|p

zp
+ 2I3

≤
∑n

i=1 E|Hi(Xi, X
′
i)|p

zp
+ 2 exp

{
− α2z2

2epM2

}
+ 2 exp

{(
γ − tα

2

)
z

y
− γ

z

y
log

(
γzyp−1

Mp
+ 1

)}
.

By taking γ = tα
2 , above equation can be generalized to

P(|∆n| > z) ≤
∑n

i=1 E|Hi(Xi, X
′
i)|p

zp
+ 2 exp

{
− α2z2

2epM2

}
+ 2 exp

{(
γ − tα

2

)
z

y
− γ

z

y
log

(
γzyp−1

Mp
+ 1

)}
≤
∑n

i=1 E|Hi(Xi, X
′
i)|p

zp
+ 2 exp

{
− α2z2

2epM2

}
+ 2

(
γzyp−1

Mp
+ 1

)−γz/y
.

Furthermore, taking y = γz, the proof is completed.
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A.3 Proof of Theorem 2.5

Proof of Theorem 2.5. We follow the same martingale–difference decomposition as in the
proof of Theorem 2.2. Let

Fk = σ(X1, . . . , Xk), Pi(g) = E(g | Fi)− E(g | Fi−1),

and write

∆n := f(X1, . . . , Xn)− Ef(X1, . . . , Xn) =
n∑
i=1

Pi(g).

For a threshold y > 0 (to be chosen in terms of z and p below) set

P̃i(g) := Pi(g)1{|Pi(g)| ≤ y}.

Then, as in Equation(14) of the proof of Theorem(2.2), we have the decomposition

P(|∆n| > z) ≤ P
( n∑
i=1

|P̃i(g)| ≥ z
)
+

n∑
i=1

P
(
|Pi(g)| > y

)
=: I1 + I2.

By Markov’s inequality and the same conditional Jensen argument, we have

P
(
|Pi(g)| > y

)
≤ P(|Hi(Xi, X

′
i)| > y).

Write

Sn :=
n∑
i=1

P̃i(g).

Each P̃i(g) is Fi–measurable, centered (E[P̃i(g) | Fi−1] = 0) and bounded by y. Then, defining
u := P̃i(g) ,we can derive the following

E[exp(tu)|Fi−1] ≤ 1 +

∫
|u|≤y

etu − 1− tu

u2
u2dF (u|Fi−1)

≤ 1 +
ety − 1− ty

y2

∫
|u|≤y

u2dF (u|Fi−1)

≤ 1 +
ety − 1− ty

yp

∫
|u|≤y

|u|pdF (u|Fi−1),

where the second inequality comes from the monotonicity of etu−1−tu
u2

w.r.p to u ≤ y and the

third inequality comes from monotonicity of |u|p
yp w.r.p. to p for u > 0.

By log x ≤ x− 1, above result can be expressed as

logE exp(tP̃i(g)) ≤
ety − 1− ty

yp
E[|P̃i(g)|p|Fi−1].

Taking the sum over i, we can further obtain
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e−tzE exp(
n∑
i=1

P̃i(g)) ≤ exp

{
ety − 1− ty

yp

n∑
i=1

E[|P̃i(g)|Fi−1]− tz

}
.

Setting

t =
1

y
log

{
zyp−1∑n

i=1 E[|P̃i(g)|p|Fi−1]
+ 1

}
,

the right hand side becomes

e−tzE exp(

n∑
i=1

P̃i(g)) ≤ exp

{
z

y
−
(
z

y
+

∑n
i=1 E[|P̃i(g)|p|Fi−1]

yp

)
log

(
zyp−1∑n

i=1 E[|P̃i(g)|p|Fi−1]
+ 1

)}

≤ exp

{
z

y

(
− log

(
zyp−1∑n

i=1 E[|P̃i(g)|p|Fi−1]

))}

=

(
e
∑n

i=1 E[|P̃i(g)|p|Fi−1]

zyp−1

)z/y
.

Combining the bounds for I1 and I2 and plug in y = z
Q for any Q > 1, the proof is completed.

B Proofs of Theorems in Section 3

B.1 Proof of Results in Section 3.1: Empirical Risk Minimization

Proof of Theorem 3.3. Clearly,

|R−Ri| ≤ |Ez[ℓ(AS , z)− ℓ(ASi , z)]| ≤ βH(zi, z
′
i). (15)

On the other hand,

|Rloo −Riloo| ≤
1

m

∑
j ̸=i

|ℓ(AS\j , zj)− ℓ(ASi,\j , zj)|+
1

m
|ℓ(AS\i , zi)− ℓ(AS\i , z′i)|

≤m− 1

m
βH(zi, z

′
i) +

1

m
β′G(zi, z

′
i). (16)

Therefore, with ϕ = R−Rloo and ϕi = Ri −Riloo, (15) and (16) yields

|ϕ− ϕi| ≤ 2m− 1

m
βH(zi, z

′
i) +

1

m
β′G(zi, z

′
i).

Moreover,

ES [R−Rloo] = Rn −
1

m

m∑
j=1

ES [ℓ(AS\j , zj)] = Rn −Rn−1.
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Applying Theorem 2.2, we can get

P(|R−Rloo| > y+2βEH(zi)) ≤ c1
mE|2m−1

m βH(z, z′) + β′G(z,z′)
m |p

yp
+2 exp{−c2

y2

mE|2m−1
m βH(z, z′) + β′G(z,z′)

m |2
}.

Note that by Hölder’s inequality, we can have for q ∈ {2, p}

E
∣∣∣∣2m− 1

m
βH(zi) +

G

m

∣∣∣∣q ≤2qE
[(2m− 1

m
β
)q

|H(zi)|q +
1

mq
|β′G|q

]
≤2q

(
(2β)qE|H(zi)|q +

(β′)q

mq
E|G|q

)
,

thus taking sum over 1 to m, we can obtain Equation (5).

For the Remp, we proceed similarly. We have

|Remp −Riemp| ≤
1

m

∑
j ̸=i

|ℓ(AS , zj)− ℓ(ASi , zj)|+
1

m
|ℓ(AS , zi)− ℓ(ASi , zi)|+

1

m
|ℓ(ASi , zi)− ℓ(ASi , z′i)|

≤βH(zi, z
′
i) + β′

G(zi, z
′
i)

m

and

ES [R−Remp] =ES,z′i [ℓ(AS , z
′
i)]−

1

m

m∑
j=1

ES [ℓ(AS , zj)]

≤ 1

m

m∑
j=1

(ES,z′i [ℓ(ASj , zj)]− ES,z′i [ℓ(AS , zj)]) (where Sj = (z1, . . . , zj−1, z
′
i, zj+1,...,zn))

≤βE[H(z, z′)].

So the Theorem 2.2 can again be applied and the proof is completed.

B.2 Proof of Results in Section 3.2: Transductive Regression Algorithms

Proof of Theorem 3.8. Let Fi := σ(x1, . . . , xi) and define the Doob martingale

Mi := E[φ | Fi], i = 0, 1, . . . ,m,

so that M0 = Eφ and Mm = φ. Let the martingale differences be

Di :=Mi −Mi−1, i = 1, . . . ,m,

so φ− Eφ =
∑m

i=1Di and E[Di | Fi−1] = 0.

For fixed i, consider xi ∈ X,
Gi(xi) := E[φ | Fi−1, xi].

Then Mi = Gi(xi) and Mi−1 = E[Gi(xi) | Fi−1], hence

Di = Gi(xi)− E[Gi(xi) | Fi−1].
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Then, Consider the sequence of xmi , since the function ϕ is symmetric, any permutations
containing same elements may lead to same value. Thus, we only need to consider for the case
that xi is not included in sequence xmi+1, and the number of those cases are (m− i)!

(
N−i−1
m−i

)
Thus, we have that for all xi, x

′
i ∈ Ri−1,

|Di| ≤
u!

(N − i)!
(m− i)!

(
N − i− 1

m− i

)
|φ(xi−1

1 , xi, x
m
i+1)− φ(xi−1

1 , x′i, x
m
i+1)| ≤

u

N − i
H(xi, x

′
i)

Then, by similar proof as Theorem 2.2, we have

P
( m∑
i=1

Di > z

)
≤ 3

(
1 +

2

p

)p Sp
zp

+ exp

(
− 2

(p+ 2)2ep
z2

S2

)
,

where

Sp = E|H(xi, x
′
i)|pp

m∑
i=1

(
u

N − i

)p
.

Then, consider for p = 2,

m∑
i=1

(
u

N − i

)2

≤ mu

(N − 1/2)(1− 1/2max{m,u})
,

for p > 2,
m∑
i=1

(
u

m+ n− i

)p
≤ up

p− 1

(
1

(u− 1/2)p−1
− 1

(m+ u− 1/2)p−1

)

The proof is complete.

Before concluding the proof of Theorem 3.9, we bound |Eϕ(S)| and the one-swap increment
|ϕ(S)− ϕ(S′)|, where S and S′ differ in exactly one point.

Lemma B.1. Let H be an Lp-bounded hypothesis class and let A be an Lp-stable algorithm.
Let h and h′ be the hypotheses returned by A when trained on S = {x1, . . . , xi, . . . , xm} and
S′ = {x1, . . . , x′i, . . . , xm}, which differ in exactly one point, where x′i is an independent copy of
xi for any i ∈ [1,m]. Define ϕ(S) = R(h)− R̂(h). Then, for any p ≥ 2,

|ϕ(S)− ϕ(S′)| ≤ 2βH(x, x′) +
∣∣∣1
u
− 1

m

∣∣∣β′G(x, x′).
Lemma B.2. Let h be the hypothesis returned by an Lp-stable algorithm A trained on S =
{x1, . . . , xm}. Then,

|ES [ϕ(S)]| ≤
1

m

m∑
i=1

EH(xi, x
′
i).
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Proof of Lemma B.1. WLOG, we assume x′i = xm+j for j ∈ [1, u]. By definition and
assumption, we have

|ϕ(S)− ϕ(S′)|p =
∣∣∣1
u

∑
k∈[1,u],k ̸=j

(
ℓ(h(S), xm+k)− ℓ(h(S′), xm+k)

)
− 1

m

∑
ℓ∈[1,m],ℓ̸=i

(
ℓ(h(S), xℓ)− ℓ(h(S′), xℓ)

)
+

1

u

(
ℓ(h(S), xm+j)− ℓ(h(S′), xi)

)
− 1

m

(
ℓ(h(S), xi)− ℓ(h(S′), xm+j)

)∣∣∣
≤u− 1

u
H(x, x′) +

m− 1

m
H(x, x′)

+ min{1
u
,
1

m
}
(∣∣∣ℓ(h(S), xm+j)− ℓ(h(S′), xm+j)

∣∣∣+ ∣∣∣ℓ(h(S), xi)− ℓ(h(S′), x)
∣∣∣)

+
∣∣∣1
u
− 1

m

∣∣∣× (∣∣∣ℓ(h(S), xm+j)− ℓ(h(S), xi)
∣∣∣+ ∣∣∣ℓ(h(S), xi)− ℓ(h(S′), xi)

∣∣∣)
≤2βH(x, x′) +

∣∣∣1
u
− 1

m

∣∣∣β′G(x, x′)

Proof of Lemma B.2. By definition of E[ϕ(S)],

E[ϕ(S)] = E

1
u

u∑
j=1

ℓ(hS , xm+j)

− E

[
1

m

m∑
i=1

ℓ(hS , xi)

]

=
1

u

u∑
j=1

E[ℓ(hS , xm+j)]−
1

m

m∑
i=1

E[ℓ(hS , xi)]

= E[ℓ(hS , xm+j)]− E[ℓ(hS , xi)]

= E
[ 1
m

m∑
j=1

ℓ(hS(j) , xi)
]
− E

[ 1
m

m∑
j=1

ℓ(hS , xi)
]

=
1

m

m∑
j=1

E[ℓ(hS(j) , xi)− ℓ(hS , xi)]

≤ β

m

m∑
j=1

EH(xi, x
′
i)

Proof of Theorem 3.9. The result follows directly from Theorem 3.8 and Lemmas B.1 and
B.2.

Here, we give the a more general result of Transductive regression algorithm. Instead of
assuming a single universal bound H(xi, x

′
i) as in Assumption 3.5, we allow a weaker, potentially

coordinate-dependent control through functions Hi(xi, x
′
i).

Assumption B.3 (Transductive Lp-Lipschitz stability). Let A be a transductive learning
algorithm. For a partition X ⊢ (S, T ), let h be the hypothesis returned by A, and let h′ be
the hypothesis returned for a modified partition X ⊢ (S′, T ′). We say A is uniformly Lp-stable
with respect to the cost function ℓ if there exist nonnegative measurable functions Hi such that,
whenever (S′, T ′) is obtained from (S, T ) by swapping exactly one point xi ∈ S with one point
xm+j ∈ T , then for all x ∈ X ,

|ℓ(h, x)− ℓ(h′, x)| ≤ Hi(xi, xm+j),
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and ∥Hi(xi, xm+j)∥p <∞ for some p ≥ 2.

Under this transductive Lp stability notion, Theorems 3.8 and 3.9 extend to Theorems B.4 and
B.5.

Theorem B.4. Let X be a finite set with |X| = N = m + u. Let xm1 = (x1, . . . , xm) be
sampled uniformly without replacement from X and let ϕ : Xm → R be a measurable function.
Assume that for each i ∈ [m] there exists a measurable function Hi : X × X → R such that
for all (x1, . . . , xm) ∈ Xm and all x′i ∈ X, where x′i is an independent copy of xi, defining
φ = ϕ(x1, . . . , xi−1, xi, xi+1, . . . , xm) and φi = ϕ(x1, . . . , xi−1, x

′
i, xi+1, . . . , xm), we have

|φ− φi| ≤ Hi(xi, x
′
i)

Suppose that for some p ≥ 2, ∥Hi(xi, x
′
i)∥p <∞ for all i ∈ [m]. Then for all y > 0,

P
(
|φ− Eφ| > y

)
≤ c1

Vp
yp

+ 2 exp
(
− c2

y2

V2

)
,

where for q ∈ {2, p},

Vq :=

(
1 +

m

N

)q−1(
1 + log

(
N

u

)) m∑
i=1

∥Hi(xi, x
′
i)∥qq,

and c1 = 3(1 + 2/p)p and c2 = 2/((p+ 2)2ep) are some constants depending only on p.

Theorem B.5. Let H be a Lp-bounded hypothesis class and let A be a transductive Lp stability
algorithm satisfying Assumption B.3. Let h be the hypothesis returned by A for a random
partition X ⊢ (S, T ). Then for any y > 0, we have

P
(
R(h)− R̂(h) ≥ y +

1

m

m∑
i=1

EHi(xi, x
′
i)

)
≤c1

Vp
yp

+ exp

(
− c2

y2

V2

)
,

where for q ∈ {2, p},

Vq =

(
1 +

m

N

)q−1(
1 + log

(
N

u

))
×

m∑
i=1

E
∣∣∣2Hi(xi, x

′
i) +

∣∣∣ 1
m

− 1

u

∣∣∣G(xi, x′i)∣∣∣q,
and the constants c1 = 2(1 + 2/p)p and c2 = 2/((p+ 2)2ep) depend only on p.

Proof of Theorem B.4. We do the similar decomposition as in Proof of Theorem B.4

Gi(xi) := E[φ | Fi−1, xi],

and
Di = Gi(xi)− E[Gi(xi) | Fi−1].

Let Ri−1 := X \ {x1, . . . , xi−1} denote the remaining pool after the first i − 1 draws, so
|Ri−1| = N−i+1. Conditional on Fi−1, xi is uniform on Ri−1. Denote xℓi=k = {xk, xk+1, . . . , xℓ}
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and Sm1 a sequence of random variables S1, . . . , sm. We write Smi = xmi as a shorthand for the m
equalities Si = xi, i = 1, . . . ,m and P(xmi+1|x

i−1
1 , xi) = P(Smi+1 = xmi+1|S

i−1
1 = xi−1

1 , Si = xi). Let
x′i be an independent copy of xi conditional on Fi−1, which means conditional on Fi−1, x

′
i is also

uniform on Ri−1 and independent of xi. Then E[Gi(xi) | Fi−1] = E[Gi(x′i) | Fi−1]. Conditioning
further on (Fi−1, xi) gives the key identity

Di = E
[
Gi(xi)−Gi(x

′
i) | Fi−1, xi

]
.

Then, consider fix Fi−1 and fix xi, x
′
i ∈ Ri−1. Under Fi−1 and Si = xi, the remaining coordinates

(Si+1, . . . , Sm) are sampled uniformly without replacement from Ri−1 \ {xi}; similarly under
Si = x′i they are sampled from Ri−1 \ {x′i}. By definition of conditional expectation, we have

Di =
∑
xmi+1

ϕ(xi−1
1 , xi, x

m
i+1)P(xmi+1|xi−1

1 , xi)−
∑
x′mi+1

ϕ(xi−1
1 , x′i, x

′m
i+1)P(x′

m
i+1|xi−1

1 , x′i).

Note that

P(xmi+1|xi−1
1 , xi) =

m−1∏
k=i

1

N − i
=

u!

(N − i)!
= P(x′mi+1|xi−1

1 , x′i),

we can obtain

Di =
u!

(N − i)!

(∑
xmi+1

ϕ(xi−1
1 , xi, x

m
i+1)−

∑
x′mi+1

ϕ(xi−1
1 , x′i, x

m
i+1)

)
.

Consider the sequence of xmi+1 and x′mi+1, We can find bijection relationship among the two
sequence: i) xj = x′i, x

′
j = xi and xmi+1 \ xj = x′mi+1 \ x′j ; ii) x′i /∈ xmi+1, xi /∈ x′mi+1 and xmi+1 = x′mi+1.

For the first case, for any fixed j ∈ [i + 1,m], the number of the permutations are (m − i −
1)!
(
N−i−1
m−i−1

)
, thus we have∣∣∣∣ m∑

j=i+1

( ∑
xmi+1\xj=x′mi+1\x′j

ϕ(xi−1
1 , xi, x

j−1
i+1 , x

′
i, x

m
j+1)−

∑
xmi+1\xj=x′mi+1\x′j

ϕ(xi−1
1 , x′i, x

′j−1
i+1 , xi, x

′m
j+1)

)∣∣∣∣
≤

m∑
j=i+1

(m− i− 1)!

(
N − i− 1

m− i− 1

)∣∣∣∣ϕ(xi−1
1 , xi, x

j−1
i+1 , x

′
1, x

m
j+1)− ϕ(xi−1

1 , x′i, x
′j−1
i+1 , xi, x

′m
j+1)

)∣∣∣∣
≤

m∑
j=i+1

(m− i− 1)!

(
N − i− 1

m− i− 1

)(
Hi(xi, x

′
i) +Hj(xi, x

′
i)

)
.

For the second case, the number of those permutations are (m− i)!
(
N−i−1
m−i

)
, thus we can claim

that, ∑
xmi+1:x

′
i /∈xmi+1

ϕ(xi−1
1 , xi, x

m
i+1)−

∑
x′mi+1:xi /∈x′mi+1

ϕ(xi−1
1 , x′i, x

m
i+1)

=(m− i)!

(
N − i− 1

m− i

)
|ϕ(xi−1

1 , xi, x
m
i+1)− ϕ(xi−1

1 , x′i, x
m
i+1)|

≤(m− i)!

(
N − i− 1

m− i

)
Hi(xi, x

′
i).
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Combining above result, we can derive

|Di| ≤
u!

(N − i)!

[
(m− i)!

(
N − i− 1

m− i

)
Hi(xi, x

′
i) +

m∑
j=i+1

(m− i− 1)!

(
N − i− 1

m− i− 1

)(
Hi(xi, x

′
i) +Hj(xi, x

′
i)

)]

≤ u

N − i
Hi(xi, x

′
i) +

m∑
j=i+1

1

N − i

(
Hi(xi, x

′
i) +Hj(xi, x

′
i)

)

=Hi(xi, x
′
i) +

m∑
j=i+1

1

N − i
Hj(xi, x

′
i)

Then, by similar proof as Theorem 2.2, we have

P
( m∑
i=1

Di > z

)
≤ 3

(
1 +

2

p

)p Sp
zp

+ exp

(
− 2

(p+ 2)2ep
z2

S2

)

where

Sp =
m∑
i=1

E

∣∣∣∣∣∣Hi(xi, x
′
i) +

m∑
j=i+1

1

N − i
Hj(xi, x

′
i)

∣∣∣∣∣∣
p

.

By Hölder’s inequality, we can obtain

E

∣∣∣∣∣∣Hi(xi, x
′
i) +

m∑
j=i+1

1

N − i
Hj(xi, x

′
i)

∣∣∣∣∣∣
p

≤

1 +
m∑

j=i+1

1

N − i

p−1 [
E|Hi(xi, x

′
i)|p +

(
1

N − i

) m∑
j=i+1

E|Hj(xi, x
′
i)|p
]

≤
(
1 +

m

N

)p−1
[
E|Hi(xi, x

′
i)|p +

(
1

N − i

) m∑
j=i+1

E|Hj(xi, x
′
i)|p
]
.

By taking sum over 1 to m,

Sp ≤
m∑
i=1

(
1 +

m

N

)p−1[
E|Hi(xi, x

′
i)|p +

(
1

N − i

) m∑
j=i+1

E|Hj(xi, x
′
i)|p
]

≤
(
1 +

m

N

)p−1
m∑
i=1

[
E|Hi(xi, xi)|p +

m∑
j=1

E|Hj(xj , x
′
j)|p
( m∑
i=j−1

1

N − i

)]

≤
(
1 +

m

N

)p−1
[ m∑
i=1

E|Hi(xi, xi)|p +
m∑
j=1

E|Hj(xj , x
′
j)|p × log

(
N

u

)]

≤
(
1 +

m

N

)p−1
(
1 + log

(
N

u

)) m∑
i=1

E|Hi(xi, x
′
i)|p

The proof is completed.

Proof of Theorem B.5. The result follows directly from Theorem B.4 and similar versions of
Lemmas B.1 and B.2.
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B.3 Proof of Results in Section 3.3: Meta-Learning

Proof of Theorem 3.13. In the following, we suppress β, β′ and β′′ inside the functions H,G
and M. We follow a similar, but slightly more convoluted strategy compared to that of Theorem
3.3. Observe that, for k ∈ [m], l ∈ [n],it holds almost surely that

mn
∣∣R(A(S),S)−R(A(S(k,l)), S(k,l))

∣∣
≤

m∑
j ̸=k

n∑
i=1

|ℓ(A(S)(Sj), zij)− ℓ(A(S(k,l))(Sj), zij)|+
n∑
i̸=l

|ℓ(A(S)(Sk), zik)− ℓ(A(S(k,l))(S(l)
k ), zik)|

+ |ℓ(A(S)(Sk), zlk)− ℓ(A(S(k,l))(S(l)
k ), zl

′
k )|

(a)

≤ (m− 1)n H(zlk, z
l′
k ) +

n∑
i̸=l

(
|ℓ(A(S)(Sk), zik)− ℓ(A(S)(S(l)

k ), zik)|+ |ℓ(A(S)(S(l)
k ), zik)− ℓ(A(S(k,l))(S(l)

k ), zij)|
)

+ |ℓ(A(S)(Sk), zlk)− ℓ(A(S(k,l))(Sk), zlk)|+ |ℓ(A(S(k,l))(Sk), zlk)− ℓ(A(S(k,l))(S(l)
k )), zlk)|

+ |ℓ(A(S(k,l))(S(l)
k ), zlk)− ℓ(A(S(k,l))(S(l)

k )), zl
′
k )|

(b)

≤ mn H(zlk, z
l′
k ) + n G(zlk, z

l′
k ) +M(zlk, z

l′
k ), (17)

where (a) follows from (8), and (b) follows from (9) and (10) . On the other hand, it is trivial to
note that

|R(A(S), µ)−R(A(S(k,l)), µ)| ≤ H(zlk, z
l′
k ) almost surely. (18)

Let g ≡ R(A(S), S) − R(A(S), µ), and denote by gk,l ≡ R(A(S(k,l)), S(k,l)) − R(A(S(k,l)), µ).
Combining (17)-(18) provides that

|g − gk,l| ≤ 2 H(zlk, z
l′
k ) +

1

m
G(zlk, z

l′
k ) +

1

mn
M(zlk, z

l′
k ).

To deliver the coup de grâce via an application of Theorem 2.2, we are also required to control
ES[g]. To that end, we proceed as follows. Let S′ = {S ′

1, . . . ,S ′
m} be an i.i.d. copy of S, and

S(j) := {S1, . . . ,Sj−1,S ′
j ,Sj+1, . . . ,Sm}. For each i, j, let S′′ := {zi′′j } be an i.i.d. copy of {zij},

independent of S and S′. Let S(i)
j = {z1j , . . . , z

i−1
j , zi

′′
j , z

i+1
j , . . . , znj }.

ES,S,z
[ 1

mn

m∑
j=1

n∑
i=1

(
ℓ(A(S)(Sj), zij)− ℓ(A(S)(S), z)

)]
= ES,S′,S′′

[ 1

mn

m∑
j=1

n∑
i=1

(
ℓ(A(S)(Sj), zij)− ℓ(A(S(j))(S(i)

j ), zij)
)]

= ES,S′,S′′
[ 1

mn

m∑
j=1

n∑
i=1

(
ℓ(A(S)(Sj), zij)− ℓ(A(S(j))(Sj), zij) + ℓ(A(S(j))(Sj), zij)− ℓ(A(S(j))(S(i)

j ), zij)
)]

≤ ES,S′,S′′ [
1

mn

m∑
j=1

n∑
i=1

H(zij , z
i′
j ) +

1

n

n∑
i=1

G(zij , z
i′′
j )]

= Ez,z′∼D,D∼µ[H(z, z′) +G(z, z′)].

Therefore, from Theorem 2.2, it follows that

P
(
R(A(S), µ)−R(A(S), S) ≥ y + E

z,z
i.i.d.∼ D,D∼µ

[H(z, z′) +G(z, z′)]

)
≤c1

Lp1
yp

+ 2 exp
(
− c2

y2

Lp2

)
,

(19)
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where

Lp1 :=
m∑
k=1

n∑
l=1

E[
(
2 H(zlk, z

l′
k ) +

1

m
G(zlk, z

l′
k ) +

1

mn
M(zlk, z

l′
k )
)p
], and,

Lp2 :=
m∑
k=1

n∑
l=1

E[
(
2 H(zlk, z

l′
k ) +

1

m
G(zlk, z

l′
k ) +

1

mn
M(zlk, z

l′
k )
)2
].

Evidently, using Hölder’s inequality, it follows that

Lp1 ≤ Cp(mnE[Hp] +
n

mp−1
E[Gp] +

1

(mn)p−1
E[Mp])

Lp2 ≤ C2(mnE[H2] +
n

m
E[G2] +

1

mn
E[M2]),

which completes the proof in light of (19).

C Numerical Experiments

In this section, we provide empirical studies highlighting the tightness of our theoretical bounds
in Sections 3.1 and 3.2. It is imperative we describe the general recipe of our experiments before
going into the details. Since the applications in Section 3 stem from the key theoretical result
Theorem 2.2, let us presume that the bounds in (3) are tight upto some constant. Therefore,
when z is large, the polynomial term z−p dominates in the decay, and from (3), it follows that

P(|f(x1, x2, . . . , xn)| − E[f(x1, x2, . . . , xn)]| > z)

P(|f(x1, x2, . . . , xn)| − E[f(x1, x2, . . . , xn)]| > C0z)
≈ Cp0 . (20)

On the other hand, in the absence of the polynomial term z−p or when z is small, the sub-gaussian
term dominates the tail probability, and consequently we should expect

P(|f(x1, x2, . . . , xn)| − E[f(x1, x2, . . . , xn)]| > z)

P(|f(x1, x2, . . . , xn)| − E[f(x1, x2, . . . , xn)]| > C0z)
≈ 2 exp(C1z

2), (21)

where C1 is some constant depending on p, E[Hi] and C0. The twin observations (20) and
(21) informs our subsequent discussion, whereby any deviations from the expected behaviors
would indicate our bounds are not sharp. In particular, we analyze the setting corresponding to
Sections 3.1 and 3.2 in the following Sections C.1 and C.2, respectively.

C.1 Simulations for empirical risk minimization

Consider i.i.d. observations S := {zi = (xi, yi)}mi=1 ∈ Rd × R from a linear model Y = Xβ + ε,

where the errors ε
d
= U

−1/ν
1 − U

−1/ν
2 , U1, U2

i.i.d.∼ U [0, 1], is drawn from the distribution of the
difference of two independent Pareto (type I) random variables. Note that here p = ν/2. For
our analysis, we take d = 5, β = (1, 1, . . . , 1)⊤, and vary m ∈ {500, 1000}, and µ = {2.2, 4.4}.
For the scaling parameter C0 in (20), we choose C0 = 1.5.

To incorporate stability in our analysis, we resort to a ridge-regression with regularization
parameter λ = 1.0; formally, let

β̂ = (X⊤X + λId)
−1X⊤Y, X = (x1 : . . . : xm)

⊤, Y = (y1, . . . , ym).



32

Note that β̂ plays the role of AS in Section 3.1. Here we consider (xi)
m
i=1

i.i.d.∼ N(0,Σ), Σij =
0.3|i−j|. We consider ℓ to be the squared error loss, so that

R(A,S) = Ex,y[(y − x⊤β̂)2], Remp(A,S) =
1

m

m∑
i=1

(yi − x⊤i β̂)
2.

Elementary calculations show that Assumption 3.1 is satisfied with probability approaching 1
for H(zi, z

′
i) = |xiyi − x′iy

′
i| and β = logm

m . Since β is extremely small for large values of m, we

may be excused for comparing p(y) :=
P(|R−Remp|>y)

P(|R−Remp|>C0y)
against C

ν/2
0 . The tail probabilities are

empirically estimated via 50, 000 Monte Carlo draws. In Figure 2, the ratio p(y) exhibits an

(a) ν = 2.2 (b) ν = 4.4

Figure 2: Plot of p(y) versus y; both the worms stabilize around C
ν/2
0 for large y.

initial exponential growth before slowing down and stabilizing near C
ν/2
0 , further vindicating

the behavior typified in (20) in light of Theorem 3.3. For larger ν (e.g., ν = 4.4), the Gaussian
tail dominates the polynomial tail more strongly at smaller values of y. Consequently, p(y) may

exceed the threshold C
ν/2
0 initially, before stabilizing in the large-y regime. This exhibits the

tightness of our results.

C.2 Simulations for transductive regression algorithms

For the numerical studies involving transductive regression, we maintain the experimental set-up
of ridge regression from Section C.1. Borrowing the notations of Section C.2, let S and T
denote the training and test set respectively, with |S| = m, and |T | = u. For the purpose of
this experiment, we take m = u, and vary m ∈ {500, 1000}. Similar to Theorem B.5, we are
concerned with

R̂(h) =
1

m

∑
i∈S

(yi − x⊤i β̂)
2, R(h) =

1

m

∑
i∈T

(yi − x⊤i β̂)
2.

Note that here β̂ is trained via ridge regression with λ = 1.0 only on the training sample S.
Similar to Section C.1, tail probabilities are empirically estimated via 50, 000 Monte Carlo draws.

Figure 3 showcases the corresponding line plots of p(y) versus y, where p(y) := P(|R−R̂|>y)
P(|R−R̂|>C0y)

.

The stabilization of the curve p(y) around the threshold C
ν/2
0 is evident for this example as well,

exhibiting the sharpness of our bounds.
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(a) ν = 2.2 (b) ν = 4.4

Figure 3: Plot of p(y) versus y for the transductive regression problem in Section 3.2.
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