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Abstract

The trade-off inherent in constant learning rate stochastic gradient descent (SGD) has
been well-documented empirically: larger learning rates often yield faster convergence, but
risk the possibility of exploding. However, the relevant question of an appropriate choice of
learning rate has rarely received systematic treatment; one often chooses learning schedules
based on domain knowledge and preliminary numerical experiments without theoretical
guidance. This question is intimately related to the concept of “edge of stability”, which
refers to a regime where the chain neither converges nor explodes. Despite rich literature on
deterministic gradient descent, the rigorous characterization of “edge of stability” for the
more ubiquitous SGD chains, remains an open question. In this paper, we formalize the
notion of the stability region, and develop theoretical guarantees for estimating the stability
region for SGD for a wide class of strongly convex objectives. We introduce a stochastic
version of Lyapunov exponent for SGD, which yields a practical, data-driven threshold for
admissible learning rates. Moreover, all of our theoretical results are backed by extensive
experiments. Collectively, these findings demonstrate a practically implementable as well as
theoretically valid way of choosing learning rate parameters in various problems, while also
paving the way to potential generalization to more complicated nonconvex landscapes.

1 Introduction

The dynamics of stochastic gradient descent (SGD) and related optimization methods have
been studied extensively from the perspective of stability, generalization, and convergence.
Foundational analyses such as [24] established stability guarantees for SGD and connected
them to generalization, while subsequent works have investigated SGD as an approximate
Bayesian inference procedure [34] and as a stochastic process with heavy-tailed gradient noise
[40]. More recently, SGD has also been analyzed as a random dynamical system with almost
sure convergence properties [20] and from a nonlinear time series perspective [2§]. However, a
consistent theme with the majority of these literature is the lack of principled guidelines on how
to choose the (small enough) step-size that ensures the stability of the system. On the other
hand, choosing a learning rate that is too small leads to excruciatingly slow convergence. Edge
of stability analysis reflects the sweet spot between stability and convergence.

However, until recently, the edge of stability literature has largely focused on deterministic
gradient descent (GD). Conventional theoretical analyses typically focus on the inverted problem
of the stability threshold—mamely, convergence guarantees at the sharpness threshold (i.e.,
the maximum eigenvalue of the Hessian) that guarantees stability for a GD algorithm with a



given step size. The practically relevant problem of determining a problem and data-dependent
threshold of learning rate that ensures stability, is much less explored. Moreover, often stochastic
gradient descent is used over vanilla GD in an online setting, and much less is known about the
edge-of-stability threshold for the SGD algorithms. In this article, we bridge this gap between
theory and practice by proposing a theoretically valid, as well as practically implementable
data-driven estimate of edge-of-stability for SGD algorithms in strongly convex setting. Our
main contributions are as follows.

1.1 Main Contributions

Maximal expansion parameter. As a stepping stone to the notion of edge-of-stability,
we analyze the geometric moment contraction of the SGD dynamics and define the maximal
expansion parameter LZ(’)/) as the maximal Lipschitz parameter for /-step SGD dynamics given
¢ € Ny and step size v > 0. This parameter can be understood as the value of the weakest
possible contraction of the SGD functional with step-size . Leveraging tools from time-series
theory, we provide asymptotic theory for estimating L*(y) uniformly over ~;

Theorem 1.1 (Theorem informal). Under standard regularity conditions, it follows that
supcr | LY () — L*(7)| = Op( ‘z%z), where T' is a compact set.

Towards the development of this result, we also borrow insights from high-dimensional statistics
literature to provide a sharp uniform moment bound on the partial sums of i.i.d. random
functions. We expect this result to be of independent interest.

Central limit theorems for the estimators L". Alongside our novel conception of the
maximal expansion parameter, we also establish the asymptotic distributions of the estimators
we define for the MEP. Along the way, we provide a general central limit theory for supremum of
random functions — a result that might also be of independent interest. The twin estimation
and inferential results lead naturally to a statistical understanding of edge of stability as in the
following.

Conceptual development and estimation of edge-of-stability for SGD. Developing on
the concept of maximal expansion parameter, we rigorously characterize the edge-of-stability,
denoted by -y, in terms of the smallest learning rate that pushes the I-step maximal expansion
parameter beyond 1, thereby making the chain explode. Our definition leads to a natural
estimation strategy for this edge-of-stability threshold, denoted by 7.,.

Theory for the estimator 7,. To the best of our knowledge, this work is the first one to
provide finite-sample error bounds on the convergence property of vy ,; in particular, we prove
the following theorem.

Theorem 1.2 (Theorem informal). Under standard regularity conditions, it follows that

A 1
Fen — el = Op(Z357)-

Here we present two examples on linear regression and expectile regression respectively. The
detailed settings are deferred to Remark and Section [C] In particular, the exact forms of the
learning-rate boundary can be provided in the linear regression model, which are v = 2/3 and
v = 10/3 for the random samples generated from standard normal distribution and standard
uniform distribution, respectively, with p = 2 and d = 1. As shown in Figure [I} by our proposed
methodology, we can very accurately hit the boundary that we derived theoretically (denoted by
vertical dashed lines in Figure [Ifa)).
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(a) Linear regression. (b) Expectile regression.

Figure 1: Examples for edge of stability. Green: A/ (0,1); Yellow: Unif[0, 1]. All the experiments
are repeated 30 times. The detailed setting is provided in Section Q

Connections with Lyapunov theory. Our framework admits a natural interpretation in
terms of Lyapunov theory once we adopt an asymptotic point of view on edge-of-stability. Indeed,
by letting £ — oo in the definition of the maximal expansion parameter, submultiplicativity and
Fekete’s lemma ensure that the limit:

1
lim - log Lf;(v)

o {—00

Ap(7)

exists. This quantity is precisely the maximal Lyapunov exponent associated with the stochastic
dynamics of SGD at learning rate v: it measures the exponential rate at which moment distances
between trajectories grow (if positive) or decay (if negative). In particular,

Ap(7) <0 = exponential contraction of p-th moments,

Ap(7) >0 = exponential expansion of p-th moments.

Accordingly, the oracle edge of stability can be equivalently characterized as the zero-crossing of
this exponent:

Yoo (p) = inf{y e I' [ Ay(7) = 0}.

This viewpoint places our notion of edge-of-stability squarely within the classical Lyapunov
framework: SGD dynamics remain stable as long as the maximal Lyapunov exponent is negative,
and instability begins exactly at the point where it reaches zero. The construction aligns
with classical work on Lyapunov exponents for products of random matrices and random
dynamical systems, beginning with Oseledets’ multiplicative ergodic theorem [36] and subsequent
developments in the monographs of Bougerol and Lacroix [11] and Arnold [4]. In those settings,
the sign of the maximal Lyapunov exponent governs long-run stability of the system. Our moment-
based definition A\,(y) can be interpreted as an analogue tailored to stochastic approximation
schemes such as SGD, and places the edge-of-stability phenomenon within the same analytical
framework.

Notation. In this paper, we denote the set {1,...,n} by [n]. The d-dimensional Euclidean
space is R?%. For a vector a € R?, |a| denotes its Euclidean norm. For a matrix M € R¥*™_ |A]
denotes its Euclidean operator norm. For a random vector X € R%, we denote | X | := A/E[| X|?].
We also denote in-probability convergence, and stochastic boundedness by op and Op respectively.
We write a,, < b, if a,, < Cb,, for some constant C' > 0, and a,, = b, if Cib, < a, < C3b, for
some constants C1,C2 > 0. Often we denote a,, < b, by a, = O(b,). Additionally, if a, /b, — 0,
we write a,, = o(b,). For a compact convex set I' = R%, we denote by int(T") := {x e T': 3¢ >
0 such that B.(z) < T}, where B.(z) := {y : | — y| < &} is the e-ball around = € R%. In
particular, we denote the closed unit ball in R? by B := B;(0). Let £(R% R™) denote the set of
all smooth, measurable functions f : R4 — R™.




2 Edge of stability: preliminaries

For a function G : R? — R, consider the following optimization problem:

0* = argmin G(A), D < R? is compact and convex,

0eD
and let &; D be the innovations. Subsequently, all the probability statements are carried
out on the same measure space as P. Define F € C'. With an online stream of &1, &, ..., the

classical SGD algorithm estimates 8* via the recursion

0; = Fg(@'—l), with Fg(&) =0—~Vg(0,&), i=1,2,..., (1)
where g is a measurable function, and g(-, z) € C? satisfies E[Vg(0,¢)] = VG(6). Here v > 0 is
the constant learning rate. Before proceeding further, we introduce two key assumptions that
are ubiquitous in SGD literature, as well as heavily used throughout our article.

Assumption 2.1 (u-strong convexity). There exists a p > 0 such that g is p-strongly convex;
in other words, for all 6,6’ € R,

(m @) —m (0'),0—0")=pulo—0,
where m(0) = E[Vg(0,&)], £ ~ P.

Strong convexity is a textbook assumption in the stochastic approximation literature [39] 37, [9].
It guarantees uniqueness of the minimizer and provides a quadratic lower bound that underlies
contraction arguments. This assumption is standard in convex SGD theory, and is satisfied by
canonical problems such as linear or regularized logistic regression. While it does not extend to
general nonconvex objectives, it is well aligned with our focus on strongly convex settings.

Assumption 2.2 (Stochastic Lipschitz continuity). Let p = 1. There exists some constant
N, > 0 such that, for all §,¢" € R,

Vg (0,§) — Vg (9/7§)Hp < Np|9 - 9/‘-

Strong convexity guarantees uniqueness of the minimizer and provides a quadratic lower bound
on the objective. This ensures that the SGD iterates are attracted toward a single point
rather than drifting among multiple optima, and it underlies the contraction arguments that
follow. On the other hand, stochastic Lipschitz-ness controls the variability of the stochastic
gradients across different parameter values. This assumption enables us to bound deviations
of the stochastic gradients uniformly, which is essential when passing from local to global
statements in a concentration analysis. We remark that Assumptions and are standard
features of statistical analysis of convex stochastic optimization, and have appeared extensively
in [39] 37, 10, 13, (3|, 43, 27].

2.1 Maximal expansion parameter: introduction

As discussed in the learning rate v > 0 plays a fundamental role in the performance of SGD;
a larger value of v may lead to 0; being divergent. However, one can preclude the possibility of
explosion by theoretically analyzing the maximum possible contraction after a given number
of iterates from the current instance. We formalize this insight by borrowing the notion of
contractive maps in dynamic systems defined by [46];



Definition 2.3 (MEP-/). The p-th Maximal Ezpansion Parameter of lag 1 (MEP-1) is defined as

E HFg (6) ~ F(9)
B =

] : (2)

Generalizing , for ¢ € N, the ¢-lag maximal expansion (MEP-/) can be defined as:

2 Y p
]:E |:|F§i+[—l:£i (9) o F§i+é—13§i (9/)| :|

Lt y) == sup ,
»(7) ) 60— o
where the composite map F&M):a(-) =F] ,o...0F o FJ().

The quantity Ly(vy) can be interpreted as the maximal possible value of the Lipschitz constant
in equation (17) of [28]; as we will discuss in §4] this interpretation readily leads to a notion of
edge-of-stability through the need to ensure geometric moment contraction. However, before
proceeding further, we take a pause here to make a crucial observation regarding the tractability
of the maximal expansion parameter.

The maximal expansion parameter, as is defined, concerns computing a supremum over pairs of
distinct points 6,6’. This form may appear cumbersome for both analysis, as well as any direct
approach to estimation. However, in Lemma [2.4] we transform the corresponding sample version
into a tractable quantity through equivalent characterization through VQF; (0) for all & and 6.

Lemma 2.4. Let D < R? be a compact convex set and v > 0 be given. Suppose Fg(@) be as in
FEquation . Then, under Assumption it follows that:

p

n 4 — Y n
0+0eD N (= 6 — 01" 6D wum1 W 2T S

Additionally, it follows that

E[|FZ (0) - FZ ()

]
sup — =sup sup E HVgFg_ (9) u‘p] )
0+£6'eD |0 -0 | 0€D ueR%:|u|=1 ‘

Remark 2.5. Virtually the same arguments as Lemma [2.4] allow us to write

FX(0) — FJ (0 + dv)|P
|, (0) |5€;( + )| ()

1 o P 1 ¢
sup sup — HV@FW, (H)u’ ]: sup lim sup —
0D ue]Rd;|u|:]_ n ; 51 6D 6—0 v:|v|:1 n Z_z;

Equation is especially useful in situations where the computation of Vgng (0) is intractable.
It allows us perform numerical differentiation by considering a fine-grained mesh around 6 in
different directions.

Remark 2.6 (Range of «y in linear regression). Consider the linear regression model
Y, = X0+ ¢,

where 6 € R? is the population parameter vector of interest and ¢; € R are i.i.d. random noise
independent of {X;};>1. In this setting, the Assumption and Assumption holds with
# = Amin{E(X; X;")} and Ny = SUP§eRrd:|5|=1 | X;: X, 0||2, where Amin{-} refers to the smallest
eigenvalue. Consequently, Theorem 2.2 in [28] ensures La(y) < 1 as long as

2Amin {E(X; X1)}
SUPgserd:|5|=1 * HXz'XiT(S”%

0<y<



It can be demonstrated that this range reaches the optimum in general. By this expression,
for d = 1, the boundary of 7 is 2/3 ~ 0.67 when X; follows the standard normal distribution
N(0,1) and is 10/3 ~ 3.3 when X; follows the standard uniform distribution U[0, 1].

Lemma |2.4] allows us to consider a supremum over a single parameter, boosting tractability by
ehmmatmg dependence on arbitrary pairs. In lieu of Lemma one can approach estimating
L,(v) (and in general Lf;(y)) by way of the corresponding empirical versions:

an P
Ly(vy) :=sup sup — ‘V@F7 0)u ‘ :
1

6D w:ju|=1 T

and in general for any ¢ € N, define f/f;’n('y) as:

1\ Y Y 7\ |P
sup n e |F§i+£—1:§z‘(9) B Ffi+e—1:§i (¢")] (5)
09— 0 '

0#0'eD

Following from Lemma we would also like to introduce a similar notion for Lﬁ('y) and its

p
U ], and,

sample version Ly"(7):

Lt =sup sup E|[|Vy(F (i+0—1):i ul?] = sup sup VoF Gl_k
»(7) 0€D w:u|=1 [ re-ve)l] 0D w:|u|= 1 H 5“’ (07

n p

. 1
L5™(y) =sup sup — > |Vo(Fre_1yi(e))ul” = sup sup —
P 0D w:|u|=1 T Z_Z; ’ (+E=1):4(6) ‘ 0€D u:|u|]=1 T Z

(H Vol §+1’ k 01k>> u

where ) = ¢ and for k > 0, 0%) = F7

Sith—1

(%=1,

Subsequently, we primarily focus on L,(y) and its estimator E;(’y) A naive treatment of the
general f-case can be understood to be quite similar; however, we mention another interesting
property of the function MEP-/ that renders the general case practically trivial after one has
considered the £ = 1 scenario. In particular, it follows that the sequence {Lg(’}/)}geN L, s
submultiplicative.

Proposition 2.7. Setp>1 and ye ', and let k,£ € N. Then:

Ly (7) < Ly() - Ly ().

érmed with these additional insights, in the next section we develop an asymptotic theory for
Ly (7).
P

3 Theoretical results on maximal expansion parameters

Before stating our main results, we collect a set of regularity assumptions that ensure both
well-posedness of the optimization problem and tractability of the analysis. Some of these are
standard in the study of SGD, but we briefly comment on their roles.

Assumption 3.1 (Compact and convex domains). The parameters 6 and v are confined to
compact convex domains D  R? and ' = [a, b], for b > a > 0.



Compactness of the parameter and learning-rate domains is not intrinsic to SGD, but serves
as a standard technical device in empirical process theory. It guarantees well-posedness when
taking suprema over continuous index sets and facilitates the use of covering arguments and
d-nets. Although unconstrained optimization problems such as linear regression are typically
posed on R?, in practice SGD iterates remain bounded due to regularization, explicit projection,
or simply because divergence leads to algorithmic instability (see, e.g., projection-based variants
of SGD in [35], [26]). Finally, the assumption that a A b > 0 excludes the trivial case Lf;’"('y) =1,
where the SGD chain does not move at all.

Assumption 3.2 (Lipschitz property, informal). There exists a constant K, < oo such that
the operator norm of VgFg (9) fulfills a stochastic Lipschitz property with respect to 6 and ~.

In order to control the first derivative of the SGD process, we must bound second order derivative
behavior of the function, giving rise Assumption This condition is satisfied by many practical
smooth models, and rules out only highly irregular loss landscapes.

Assumption 3.3 (2p-moment bound). Fix p > 1. Assume

2
A=FE| sup sup VgFg_(H)u‘ " < .
0eD,vel u:ju|=1 ’

Finite 2p-th moments of the stochastic gradients strengthen Assumption and are standard
when deriving concentration inequalities for SGD. In our setting, this condition ensures that
deviation inequalities for the empirical expansion parameter hold with high probability, which is
essential for establishing nonasymptotic confidence statements about the edge of stability.This
requirement is reasonable in practice for smooth models where gradients have sub-Gaussian or
sub-exponential tails.

Assumption 3.4 (Differentiability). Fix p > 1. We assume that %Lﬁ(v) is defined for all vy e T,
%Lf,(’y)‘ < K.

and that there exists some K}, > 0 such that sup,cp

Differentiability of LZ (p) with respect to v ensures that the stability threshold behaves regularly
in a neighborhood of the edge. This smoothness enables a first-order expansion around ~(p),
which is the key step in transferring concentration of L, (p) into consistency of 3, (p).

3.1 Asymptotics of MEP-/

In this section, we control the estimation error of E; (7) uniformly over v € T, setting the stage
of eventual estimation of the edge-of-stability upon its definition. To that end, we recognize that

~ D
Ly (7y) = supgep IS ‘V(;Fg (9)‘ as the L, norm of mean of random functions. Subsequently,
adapting the tools of [16], we provide a general result controlling the partial sums of i.i.d. random

functions.

Theorem 3.5. Let ® < R? be a compact conver set and X1(¢), ..., Xn(p) be i.i.d. random
functions with X; : R% — R™ for some d,m = 1. For p > 1, denote

Ko —E| sup X)Xl
pFEP'ed o — o'

] < 0, and (6)

Ag, =E [sup |X¢(gp)|2p] < 0. (7)
ped



Let the n-th partial sum be defined as Sy p(@) = D1 | Xi(p)|P. Then it holds that:

E | sup [Snp(¢) — E[Snp(9)]] = O (v/nlogn),
pE

where O(-) hides constants solely related to p,d,m,® and p.

Theorem to the best of our knowledge, is the first such result controlling the moments of
sums of random function. As such, it may be of independent interest. Importantly, due to the
compactness of ®, the mean discrepancy between the L4 norm of empirical and oracle average,

decays at the near-parametric rate O(~/(logn)/n).

This general result serves as the workhorse for bounding the estimation error of ig (7). As an

application of Theorem we recover the following guarantee on i; (7), and more generally
Ly" (7).

Theorem 3.6. Fiz { € N, and recall Lf,(fy) and iﬁ’”(’y) from Deﬁmtion and respectively.
Then, under Assumptions and [3-143-3, it holds that:

sl -] -0 (%),

Establishing such guarantees is essential: without quantitative control of the estimation error,
any attempt to approximate the edge of stability would remain heuristic. Theorem provides
precisely this control, paving the way for our eventual goal: precisely estimating edge-of-stability.

3.2 Central limit theory of ﬁf)’"('y)

In this section, we expand on Theorem to facilitate statistical inference with L. Similar to
Theorem we start off with a general result.

Theorem 3.7. Consider a probability space (0, A,P), and for i€ [n], let X; : Q@ — L(R? R™)
be i.i.d. random elements on L(RY,R™) for some d,m > 1. Denote:

Sn() = Y (Xi(-) = B[X:()])-

1=

[y

On the same probability space, let Z1, ..., Z, be an i.i.d. mean-zero R™-valued Gaussian random

field on R?, such that for all x € RY, Zl(a:) ~ N(0,Cov(X;(z))), and
Cov(Zi(x), Zi(y)) = Cov(Xi(x), Xi(y))-

Denote SZ(-) =" Zi(-). Let ® = R be a compact convex set. Then, under the conditions of
Theorem it holds that

sup |P(sup |Sp(x)| = z) — P(sup ‘Sf(x)‘ >z)| sn

zeR zed zed

where, < and C hide constants depending solely on Ko and Ag .



As with Theorem [3.5] this statement is more general than the focus of this paper, but can be
applied in order to derive central limit theorems for the estimators of Lf;('y) and v¢(p).

Theorem 3.8. Fiz { € N, and recall Lf,(fy) and f)f;’n(’y) from Deﬁmtion and respectively.

Additionally, set Sy (y) = n(iﬁ,’"(’y) - Lf;('y)) and SZ () in accordance with its definition in the
theorem statement of Theorem[3.7. Then, under Assumptions and [3I3.3, it holds that:

sup ‘IP’(sup Lf,’"(’y) — Lf,('y)‘ > z)
zeR ~yel

—P(sup [S7(y)] = nz)| <0,
~yel

where < and C' hide constants depending solely on Ko and Ag .

The proof of Theorem [3.8] follows directly from Theorem [3.7] and hereby omitted.

In order to practically use the Theorem [3.§] for statistical inference without apriori knowledge of
the corresponding asymptotic covariances, one can implement multiplier bootstrap [14], whose
theoretical validity can be established likewise as in the above results. We also empirically
demonstrate the validity of the Gaussian approximation in the case of linear regression in

Figure [2]

4 Edge of stability: definition and estimation

In this section, we endeavor to precisely characterize the edge of stability through the explosions
of MEP-/. Subsequently, we propose a corresponding version of data-driven edge-of-stability, and
provide finite sample error bounds.

Definition 4.1 (E0S-¢). Fix £ € N;. The oracle edge-of-stability of lag ¢ (E0S-) is defined as

Y (p) = inf{v > 0| Ly(y) = 1}.

Clearly, Lf)(O) = 1. By recalling Assumption v¢(p) can be interpreted as smallest v > 0 such
that the geometric moment contraction no longer holds for the SGD dynamics. As with Lf)(*y),
we ignore the subscript ¢ whenever £ = 1.

Remark 4.2. Tt is not yet evident why ~,(p) even exists. To ensure its existence, we proceed via
the following argument.

1. Recall Theorem 2.2 in [28]; under Assumptions there exists a function k : Ry — R,
such that for 0 < v < k(p), we have L,(y) < 1. Here we remark that [28] dealt with the
p > 1 case; which however can imply the case with p = 1 by Hélder’s inequality as shown
in [47).

2. Since g(+, &) € C?, by the Lebesgue Dominate Convergence Theorem (DCT), limy o Lp(7y) /7P =
SUPg SUPyeRd:|u|=1 E[’vgg(ea §)u|p]

Conditions 1 and 2 above ensure that v,(p) € I exists.
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Definition of the empirical version of v,(p), denoted by 4z, (p), is not straight-forward, since the
guarantees in [28] extend only to Lf;( ), and not to its empirical version. However, Theorem [3.6 .
ensures that for all v € " for any compact set T', L (7 ) is closely approximated by its empirical
version f)ﬁ’”(’y). Therefore, it is conceivable to leverage Theorem to obtain a precisely-defined

compact convex set I', such that, with high probability, Ef{n(’y) crosses 1 on int(I"). More
formally, by Theorem 2.2 in [28] and continuity of Lf,(-) < 1, there exists some § > 0 and 'yo >0

such that Lf;(v) < 1 for all v € Bs(y0). On the other hand, let *yg( =inf{y>0]| Le ) > 2}.
Similar to Remark 7} (p) is well-defined. Then we proceed to define the edge—of—stablhty at
lag ¢.

Definition 4.3. Denote I" := [yo, 'yg(p)]. The oracle E0S-/ is defined as

Aen(p) = min {v €T |Ly"(v) = 1} :

Note that, by definition of T, it also follows that 7¢(p) € int(I'). We establish the following
conventions for the edge-cases: if sup.er L "(v) < 1, then 7, (p) = 0; on the other hand, if

inf =0 Lp (v) = 1, then 4y ,(p) = 0. In fact, in the following we prove that these edge cases
have vanishing probability, and consequently, we recover the asymptotic consistency of v, (p)
as an estimator of v(p).

Theorem 4.4. Fiz { € N, and recall ~,(p) and g, (p) from Deﬁnitions and respectively.

Then, under Assumptions [2.1]2.9 and[3.1{5.3,

P(Hen(p) €int(I')) - 1 asn — .
Additionally, it holds that:

Ben(p) — (p)| = Os (155”) .

To the best of our knowledge, Theorem provides the only, provably consistent estimator of
E0S-/ in the context of SGD. Beyond theoretical interest, the practical relevance of estimator
cannot be overstated; 4y ,,(p) indicates a data-driven threshold of the learning rate, beyond which
the SGD dynamics explode with high probability. Moreover, employing multiplier bootstrap and
the central limit theory (Theorem , it is possible to produce asymptotically valid confidence
intervals for 4y, (p); We defer the technical details for future work.

5 Simulation

In this section, we empirically characterize the edge-of-stability region, and assess its statistical
optimality. In particular, in we estimate the contraction ratio Lp(y)l/p as a function of ~
and identify the smallest v at which contraction fails. The resulting empirical boundary closely
matches our theoretical prediction, demonstrating that the proposed “edge of stability” is tight.
Moving on, in we exhibit the asymptotic gaussianity of our estimator L and ~. Additional
numerical experiments are provided in Appendix §C|

5.1 Tightness of “edge of stability”

We consider the data generating mechanism Y; = XZ»T 0* + €, and let & = {X;, yi}ien, denote
the observed sequential data and 6* is the unknown population parameter of interest. For the
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purpose of this study, we consider linear regression with squared loss. Let the true feature
vector X € R? is drawn either from a Gaussian design N(0, I), and the noise ¢ is drawn from
a standard Gaussian distribution, independent of {X;};cy. We vary the ambient dimension
de {1,2,3,5,10}, the composition lag [ € {1,5,10}, and the moment index p € {2,4}. We sweep
v on a grid Tyerm = {0.01,0.02,...,1.00} under the Gaussian design, and for the Uniform design
we use 'ynir = {0.01,0.02,...,4.00} to account for the different curvature scales observed in
practice.

Across all configurations, the curve v — Lp(’y)l/p exhibits a clear elbow: it decreases from 1,
reaches a minimum, then increases, crossing 1 at the stability edge 7, after which it grows rapidly
(diverging). Since this transition occurs well within the plotted range, 7 is visually sharp and
can be localized to a narrow interval.

In Figure (3| subplot (a) shows that increasing p € {1,2, 3,5, 10} shifts the crossing leftward, i.e.,
stronger tail sensitivity yields a smaller admissible step-size, consistent with [28]. Subplot (b)
shows that increasing lag ¢ enlarges the stable region: by sub-multiplicativity,

Li(7) < Lp(v),

larger ¢ pushes ratios further below 1 on the stable side and further above 1 on the unstable
side, allowing larger v while maintaining contraction. Subplot (c) shows that the stable region
contracts as the dimension d increases. Moreover, the empirical edge 7y, (p) (yellow curve in (a),
red curve in (b)) closely matches the theoretical boundary in Remark ford=1and £ =1,
namely ¢, (2) = 2/3 for X; ~ N(0,1) and 7¢,,(2) = 10/3 for X; ~ Unif[0, 1]. Overall, Figure
validates that {7 : L,(7y) < 1} is a single interval starting at 0, whose boundary is captured by
the unique intersection with level 1, and whose dependence on (p, ¢, d) matches the theoretical
predictions.

5.2 Gaussianity of L

We also provide plots demonstrating the validity of Theorem As with we consider the
linear regression setting with the feature vector X € R? drawn from a Gaussian design N(0, 1),
and the noise ¢ drawn from a standard Gaussian distribution, independent of {X;};en. Setting
n=10% ¢ =1 and p = 2, we use Q-Q plots with 1000 i.i.d. samples to demonstrate that for
d e {2,6} and v € {0.5,0.25}, Lf,’n('y) is asymptotically normal. We have already demonstrated
in the simulations in Figure |3| and proved in Theorem that Lfo’"(’y) is consistent, meaning
Tln Y . .
that Ly (v) — L,(7) is asymptotically mean zero normal.

(a)d=2,7=05 (b)yd=2,v=0.25 (¢)d=6,v=0.5 (d)d=6,v=0.25

Figure 2: Q-Q plots demonstrating asymptotic normality of the estimator for the MEP.
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6 Conclusions and Discussion

In this work, we provided a principled characterization of the stability region of SGD with
constant learning rates. By introducing the notion of the maximal expansion parameter and
connecting it to Lyapunov exponents, we established a rigorous definition of the edge-of-stability
and developed a consistent, data-driven estimator for identifying admissible learning rates. Our
theoretical results, complemented by extensive simulations on linear and expectile regression,
confirm that the proposed framework accurately captures the transition from stable to unstable
regimes. These findings supply both a theoretical foundation and a practical tool for selecting
constant step sizes in online learning algorithms.

Looking ahead, the observed dependence of stability thresholds on factors such as dimension,
lag, and moment index underscores the importance of adaptive, data-driven tuning strategies,
rather than relying on fixed heuristics. Moreover, by situating SGD stability with the Lyapunov
exponent in dynamic systems, our work lays the groundwork for unifying deterministic and
stochastic stability analyses, potentially leading to sharper guidelines for learning rate selection
across a broad range of optimization problems.

T T T T

— lag=1 / /
lag=2 /
lag=3 - / /

= [EE N /
lag=5 \. 72 / 150 /

41— lag=10 , / /

- / 125 /

o /
osos ol 0% ol i oF oo 0T oo / \
\ /
2 \ _— 050
L —d
PO — .
\"" = a
025
s = N \ - d
T - — M
o
. X oo s o8 1o 00 02 04 06 08
v v

(a)d=1,0=1,pe{1,2,3,510} (b)d=1,0€{1,2,3,510},p=2 (c)d={1,3,510},¢=10,p =2

2w N e

S

oo

o

1
3
5
10

10

Figure 3: Linear regression with X; ~ N (0, I;). Each panel plots f)f)(’y)l/p versus the constant
step size « for linear regression. Experimental factors and grids follow the setup marked in
subplot labels.

Software and Data

All the relevant reproducible codes can be found in the anonymous |Github repository. All the
theoretical results and assumptions are rigorously proved and validated in the Appendix §DF{F.1]
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This appendix is devoted to additional discussion, collection of mathematical arguments and
additional simulation results. In particular, in §A] we discuss some other approaches to edge-of-
stability analysis, as well as the existing gaps in the literature. In we provide detailed
proofs to our theoretical results.

A Related Literature

The edge of stability phenomenon was first systematically identified by [17] in the context of neural
networks, showing empirically that GD trajectories typically operate at the stability threshold.
Subsequent work such as [2] extended these insights to simple neuron models, establishing that
edge of stability behavior arises even in minimal architectures. These contributions built on a
long line of optimization analyses [9, [6] that emphasized the importance of step-size selection
and convergence guarantees.

Several papers seek to isolate the mechanisms behind the edge of stability using simplified or
tractable models. [5] developed a theoretical framework for GD at the edge of stability, while [54]
and [31] employed minimalist examples to clarify the core dynamics. Variants such as diagonal
linear networks [22] and two-step updates [I12] further illuminate how the phenomenon arises
across different formulations. Parallel lines of work have also explored how normalization or
regularization mechanisms affect optimization stability, e.g. [29] on batch normalization and [7]
on implicit gradient regularization.

Another strand of work interprets the edge of stability through the geometry of the loss landscape.
Progressive sharpening along training trajectories was analyzed by [42], while [41] provided
a bifurcation-theoretic view. More recent work has refined these ideas via high-dimensional
analysis [I], sharpness-aware methods [32], and curvature-aware learning-rate tuning [38]. These
developments resonate with broader optimization perspectives on adaptive learning rates [48]
and comparisons of adaptive methods with SGD [51].

Beyond stability, the edge of stability has been connected to implicit bias and generalization. For
instance, [44] and [19] study logistic regression at the edge of stability, highlighting the implicit
regularization induced by GD. Related work considers minimax optimal convergence [52] and
generalization in decentralized SGD settings [49]. This complements a broader literature on
benign overfitting and generalization in over-parameterized models [8, 50} 55| [30], where stability
considerations play a central role.

While the majority of results concern deterministic GD, several papers have begun exploring
extensions. [3] revisited the notion of stability under stochastic gradient descent, whereas [1§]
and [21] examined adaptive and Adam-type methods, respectively. Other directions extend
edge of stability analysis to deep linear networks [23] and multi-fractal loss landscapes [33].
These developments connect naturally to classical work on stochastic approximation [45], 25]
and continue the trend of relating stochastic dynamics to stability properties.

Despite this growing body of work, the focus has remained predominantly on GD. By contrast,
our work develops a systematic analysis of edge of stability in the context of stochastic gradient
descent, providing a sharper understanding of how stochasticity modifies, stabilizes, or destabilizes
the classical GD picture. In this way, we broaden the scope of the edge of stability framework to
settings of practical relevance.
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B Detailed Assumptions

We expand upon the definitions in the main text for which a concise form was given, giving their
full details and the explanation for those forms and their inclusions.

Assumption B.1 (Lipschitz property). We assume that there exists a constant K, < oo such
that the operator norm of VyF, g (0) adheres to the following property with respect to 6 and ~:

[worg @]~ [vorg @
E sup v i
Oy) =0y )eDxTxB (10 = 0|+ [y =]+ [u—u'|)P

Assumption B.2 (2p-moment bound, fully explained). Fix p > 1. Assume

] ‘

< K,

2p
A=E| sup sup VgFg(H)u‘ < 0.
0eD el u:|u|=1 ‘

Finite 2p-th moments of the stochastic gradients strengthen Assumption and are standard
when deriving concentration inequalities for SGD. Higher-moment assumptions of this type are
routinely employed in empirical process theory (see, e.g., [16]) to obtain exponential tail bounds,
and they also appear in modern analyses of statistical inference for SGD [13]. In our setting,
this condition ensures that deviation inequalities for the empirical expansion parameter hold
with high probability, which is essential for establishing nonasymptotic confidence statements
about the edge of stability. While stronger than bounded variance, this requirement remains
reasonable in practice for smooth models where gradients have sub-Gaussian or sub-exponential
tails.

Bounding higher-order derivatives of the stochastic update map is not a universal assumption,
but is a reasonable strengthening of smoothness. In the SGD chain, its contraction dynamics are
characterized by its the first derivative of the iterate function. In order to control this derivative,
we must bound second order derivative behavior of the function, giving rise Assumption
Although quite strong, this condition is satisfied by many smooth models of practical interest
(e.g. generalized linear models), and rules out only highly irregular loss landscapes.

C Extended Simulations

In this section, we expand upon Section [5| to empirically characterize the edge-of-stability region,
and assess its optimality. Across a suite of synthetic settings (linear and expectile regression
with varying dimension, lag, and data distributions), we estimate the contraction ratio Ly () 1/p
as a function of v and identify the smallest v at which contraction fails. The resulting empirical
boundary closely matches our theoretical prediction, demonstrating that the proposed “edge
of stability” is tight. Taken together, these results validate the theory and provide actionable
guidance for selecting constant step sizes that guarantee convergence in practice.

We first demonstrate our result focusing on the following data generating mechanism:
Y; = X, 0% + ¢,

and let § = {X;, y;}ien, denote the observed sequential data and 6* is the unknown population
parameter of interest. We study two convex models: (i) linear regression with squared loss
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where F (¢) takes the following form:
FJ(0) = 0 = vXi(X,'0 — w2),
and (ii) expectile regression with the asymmetric least-square loss
G2(6) = Eg,—(x, )t [0 — LixToy 20y (XG0 — )%/2,
with weight w € (0,1), and corresponding Fg (0) is given by

F(0) =0~ |w— 1{X,L-T9—yi>()}|Xi(XiT9 = Yi)-

The feature vector X € R? is drawn either from a Gaussian design A(0,I;) or a product
Uniform design Unif([0, 1]¢) and the noise ¢ is drawn from standard Gaussian distribution,
independent of {X;};eny. We vary the ambient dimension d € {1,2,3,5,10}, the composition
lag [ € {1,5,10}, and the moment index p € {2,4}. For linear regression we sweep 7 on a grid
Thorm = {0.01,0.02,...,1.00} under the Gaussian design, and for the Uniform design we use
Cunir = {0.01,0.02,...,4.00} to account for the different curvature scales observed in practice.

Across all configurations, the mapping v — Lp(fy)l/ P exhibits a pronounced elbow shape, where
the estimated ratio initially declines from 1, reaches a minimum, and then reverses, crossing 1 at
the stability edge; beyond the crossing it grows rapidly, ultimately diverging. The transition
occurs well within the plotted range, so the edge 7 is visually stable and can be localized to a
narrow interval.

In Figure |3| and Figure |4} subplots (a) demonstrate, that increasing the moment index p €
{1,2,3,5,10} shifts the crossing leftward while keeping the minimum shallow. This indicates that
heavier emphasis on tail deviations tightens the admissible step-size, which aligns with the result
proposed in [28]. Varying the lag ¢ in subplots (b) of Figure [3| and Figure |4| primarily enlarge the
edge of stability as lag ¢ increases: for any fixed v, sub-multiplicative gives Lf;(v) < Lp(fy)e , SO
increasing ¢ pushes ratios further below on the stable side and further above 1 on the unstable
side. Thus the increase of ¢ allows larger v to ensure the contraction. The dimensional study
in subplots (c) of Figure 3| and Figure [4] shows the early contraction of the stable region as d
increases. In addition, the empirical edge 7y, (p) extracted at the yellow curve in subplots (a)
and red curve in subplots (b) closely matches the theoretical boundary proposed in Remark
for d = 1 and £ = 1 case, where ;,,(2) ~ 2 for X; ~ N'(0,1) and 9;,,(2) ~ 2 for X; ~ Unif[0, 1].
As a conclusion, the results displayed in Figure [3] and Figure [] validate that the stability set
v : Lp(y) < 11is a single interval starting at 0, its boundary is accurately captured by the unique
intersection with level 1, and its dependence on p, ¢, and d follows the theoretical predictions.

Figure |5| shows that expectile regression mirrors the linear case: the edge of stability (the unique
crossing of Lp(fy)l/p with level 1) decreases as the moment index p increases and increases
as the lag ¢ grows. The first trend follows the p-sensitivity of the contraction metric via
Holder’s inequality. The second follows from the sub-multiplicativity of the maximal expansion
parameter (MEP), Ly, o1 x(7) < Lpe(v)Lpx(7), which strengthens contraction on the stable side
and steepens growth on the unstable side with right shifting the crossing in 7. The same
qualitative dependencies appear for expectile regression for dimension d: the edge moves left
as d grows (a smaller stable 7). Taken together, these curves confirm that the qualitative and
quantitative dependence of the stability edge on p, ¢ and d persists beyond squared loss.
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plots f/f,(y)l/p versus the constant step size v for expectile regression and is averaged over 30
experiments. Experimental factors and grids follow the setup marked in subplot labels.
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D Proofs of §2]

D.1 Proof of Lemma [2.4]

Proof. W.l.o.g., we consider the case £ = 1; the case for general £ € N is similar. Note that since
FJ(-) e, it follows that

|Fe(0) — Fe (&))"

Lo IR0 - R @0)F

sup sup —Z’V@F7 u’p sup — thsup

sup —Z

0€D w:lu|=1 T 9D M 2 00 ’9 Al " gzoep 0 = 0 —o°
(8)
On the other hand, by Jensen’s inequality and the convexity of D,
p 1 P p
wp 15 B0 -F©O) wp 13 SFL(0 + 10— 0))at)
046D n = ’0 — 0/|p 040D n izl |9 — 0/|p
o Y (p! /
. EXO‘&Fg (@ + (6 — 9))‘ dt
o£0€D N (= 60— 0"
Ny ‘veFV @+t —0))0—0) dt
= sup —
soobnn & =0T
< sup sup — ‘VQF7 0 +t(0—0))u ’
0#6'eD,te[0,1] u \u| 1=
<sup sup — ‘VQF'Y 0)u ‘ ) 9)
0D w:lu|=1 T ;
\Fz o) -1 (o)
Equations and (9)) jointly conclude the proof of (3)). In lieu of supg_gep E[W]
oo from Assumption Dominated Convergence Theorem entails Lemma
O
D.2 Proof of Proposition
Proof. We denote Hy(6) := F;1y_14(0) and Fyp_q1 = 0(&;,...,&10—1). Then:
E[|F; —1:4(0) — F; _14 (0[P F; —14(0) — F; —14(¢
L4(7) = sup [ Fito4r—1:(0) Frveri L (0)°] sup E[' +otk—1:(0) it 1:4(0")]
6£0'eD |6 — 0] 040'eD |60 —0']
~ s E | Fivork—t:i+e(He(0)) = Fiorh—vive(He(0)[”  [He(9) — He(e')|p}
020€D | [ Hy(6) — Ho(6")[ 6 -0
[ [ |F; Hy(0)) — F, Ho(0")P |He(0) — Ho(0")P 1
_ s E|E | Fisoh—t:+e(He(0)) z+£-i/—kplz+€( (0N [He(0) Izp( )| |Fz—1]
0+0'eD I [H(0) — He(0'))| 60— 0| |
[ [ [ Fiesnive(H F; ave(Ho(0) Hy(0) — Ho(60')["]
~ sw E|E | Fisork—tive(He(0)) — ik, +o(H(0'))| \-7:@1]“ «(0) /ep( )|
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Conditionally on Fy_1, F;y¢1k—14+¢ is driven by k new i.1i.d. innovations which are independent
of Fy_1. Therefore we deduce that:

E[!E+z+k—1:i+z(ffz( ) = Fiork—1.+e(He(0)]P

)
|Hy(0) — Ho(0")P |fe—1] < L’;(ry).

Therefore:

+ Hy(0) Hﬂ(e,”p [ H(0) Hﬂ(elﬂp
Le k Y) < su E |:Lk | d = Lk Y): su = Lk Y) LK Y)-.

E Proofs of §3]

Before we proceed to the key arguments behind the theoretical results of §3| it is instrumental to
introduce a key result that serves as the backbone of our arguments. This result originate from
[16], and serves as sharp probabilistic controls on the fluctuations of empirical sums indexed by
high-dimensional parameter sets. We restate it here in a form adapted to our setting.

Lemma E.1. Let Xq,...,X,, € RP be independent random vectors with p = 2. Define M =
mMaxy<i<n,1<j<p ’X”LJ‘ and 02 = IMaxig<y Z?:l E[XIQJ] Then:
n

E [ max |3 (X;; — E[Xz-mu < K(o/logp + /E[M?] log p),

Isisp |

where K > 0 is a universal constant.

This lemma complements the previous one by providing an expectation bound for the same
maximal deviation and quantifies the typical size of the deviation, showing that it scales as
O(\/@) up to constants depending on variance and maximal moments. In summary, it
provides the empirical process tools that underpin our general moment bound in Theorem
We note that the for the sake of brevity, the results are proved for £ = 1; the general ¢-cases
follow by a simple conditional argument akin to Proposition

E.1 Proof of Theorem [3.5

The key idea of Theorem is to discretize the set ® with suitably selected grid, before applying
Lemma to control the deviations of functions evaluated on those grid-points. This grid is
carefully chosen to have appropriate packing radius, that allows us to move seamlessly into the
compact set ® while maintaining the rate derived on the grid-points. We formalize this ideas
through a novel technique leveraging e-nets.

Proof. Let N := n¢ for some ¢ > p/2. For a given ¢ € ®, we denote |p|n = + ([Ncp | Ne
with ¢* being the kth coordinate of ¢. Then, by compactness and convex1ty of , N

Al



23

{le|n | ¢ € P} is a d,,-net for @, where ¢ := §,, < Lgn ¢ for some constant Lg > 0 that depends
only on ®. Enumerate its elements as {¢1,...,¢s} and observe J < Lg - N%. Recall As

defined in Theorem and set X;; := | X;(p;)|P. Clearly, with 02 := maxi<j<s >0 E [Xw]
we obtain, via ,

o? <nE [sup |Xi(g0)\2p] =n-Agp,. (10)
ped
On the other hand, letting M? := mMaxi<i<n,1<j<J \Xij|2, it follows
E[M?| = E | max sup|X; E | sup | X; =n-Asp,. 11
[M1°] [g| (o) ] 2 LJ;’ (v >|] . ()

In view of and , Lemma entails
] <K (0\/10g J ++/E[M?]log J)

=K (\/n . A¢,p\/log Lo + cdlogn + +/n - Ag ,(log Lo + cdlog n))

n

E [ max Z (XZ] —E [XZ]])

1<5<J |4
J =1

< B-+/nlogn, (12)

where K > 0 is a universal constant and B > 0 depends only on Ag ,, ¢ and d. With this
necessary derivations taken care of, we proceed towards the main arguments. By definition,
lo — |¢|n] < 0. Recall Sy ,() from the statement of Theorem Note that

E[sup |Snp(0) = E[Snp(0)]] ]

<E[lrgja<><J\5np lo]v) = E[Shp(le)n )]\]+E[itép|5np( ¥) - Sn,p(lsDJN)\]+21€15\E[5n,p(s0)]—E[Sn,p([soJN)]\

=T + Ty +T5. (13)

We tackle one-by-one. Equation instructs that 77 = O (y/nlogn). Next, moving on to
T5, we observe that

E | sup [Snp(p) — Sn,p(lcpJN)ll <n-E [sup | X7 () — Xf’(lsOJN)!]

ped ped
<np-E [2 sup | X; ()P~ - sup [ X;() — Xi(l@JN)|] (14)
ped ped

< 2np (E [SUP !Xi(@)|p]> ' <E [SUP | Xi(p) — Xi([SOJN)|p]
ped ped

(

(

2”7’\/@ K<I>5 v = O(n - 5*0/7’) = O(nl*C/}D)7

where, follows due to the elementary inequality ||a|’ — |b|" | < p (\a|p71 + 6P - |a—b],

for p = 1 a,beR; involves an application of Hélder’s inequality, and finally, (16]) invokes
@ and (|7). Note that trivially T3 < T,. Therefore, , along with 6 = O(n™°) with ¢ > p/2,
begets,

>;

15)
16)

E |sup|Snp(p) = E[Snp(9)]l | € -vnlogn +n'"P = O (y/nlogn),
ped

where < hides constants pertaining p, d and ¢. This completes the proof. O
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E.2 Proof of Theorem [3.6]

The key idea behind Theorem is to express the data-driven MEP’s as supremum of random
functions, before invoking Theorem

Proof. For 8 € D,~v eI and u € B, denote

M - i ‘ng’Y o

, and, M(0,v,u) = E HVQF&(Q)UF] .

We start off by establishing

-0 (1‘\’%> . (17)

E [ sup |Mn (0777’“) _M(97’7¢u)|
0eD,vel',ueB

Observe that ® := D x I x B is a compact set, and F’ () are i.i.d. random functlons taking
values in ¢ € ®. Moreover, Assumptions E 2| and 3 ﬂ correspond to @ and ([7)) respectively.
Therefore, a direct application of Theorem [3.5) ﬂ entails . Finally, in lieu of Lemma

yields

E [sup LE"( ) — Lf,(’y)‘] E[sup

~yell vyel

sup sup —Z’V9F7 ‘ —sup sup E[V(;FV(G) ]
0eD w:|u|=1 T 0€D w:|ul=1

<

~

E sup
0eD,~vel'ueBB

o)

which completes the proof. O

S

3 ([worz 0] -z [0 ])|

E.3 Proof of Theorem [3.7]

Proof. 1t is necessary to establish a bound on P(sup,cq |Sn(z)| = 2). Let N := n¢ for some
¢ > p/2. To this end, for a given y € ®, we denote |y|y = % ([Nylj, cel [Nydj), with y* being
the kth coordinate of y. Then, by compactness and convexity of ®, N := {|y|n | y € ®} is a Jy,-
net for ®, where ¢ := §,, < Len~¢ for some constant Ly > 0 that depends only on ®. Enumerate
its elements as {y1,...,ys} and observe J < Lg - N%. This allows for the decomposition:

T :=sup [Sn(y)| < sup|Sn(y) — Su(lyln)] + sup [Su(ly)n)| = T1 + T3.

yed yed yed

A similar decomposition holds for the Gaussian process:

Z = sup |57 (y)| < sup |S7(y) = ST ([yla)| +sup [S7 ([yln)| = Z1 + Za.
yed yed yed

It is also useful to observe that Zo < Z + Z;.

These decompositions allow for the following, setting € > 0:
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sup [P(T' = z) - P(Z

\Y

2)]

zeR
Ssup|P(T=2)—P(To=z+¢)|+sup|P(To=2+¢) —P(Za=2z+¢)|+sup|P(Z = 2) —P(Zy > z + ¢)|
zeR zeR zeR
SP(Tyze)+sup|P(Ta = 2) —P(Zy = z)|+sup |[P(Z = z) —P(Z2 = z + ¢)|. (18)
zeR zeR

For the first summand in , bound as follows using Markov’s inequality:

P(Ty > ¢) = P(zlelg 1Sn(y) — Sullyln)l > €) < 8_1E[?§§ 1S5 (y) — Sn(lyln)l]

< nsflE[sug 1X;(y) — Xi(lyln)|] < ne '/ Kob, < e tnl7c. (19)
ye

For the second summand, it is prudent to fulfill condition (ii) for Corollary 2.1 in [I4]. De-
note z;; = X;(y’). Then for p € {1,2} in particular, recall Equation (7). Set Ci := Ag.
Nondegeneracy guarantees existence of some ¢; > 0 such that:

pREE
=1

Observe via Jensen’s inequality that for all i € [n]:

GRS

SN

sup E[z;j]*] < sup (E[|z5|"])**,
jelJ] JelJ]

1
so setting By, == A}, yields 1 3" | E[|zij|*] < 2B2,, guaranteeing condition (E.2). Additionally,
observe:

By(log(Jn))" _ (log(n*™))T ), qylos"n
n n n

4 7
so to fulfill M < Con™2, it is sufficient to choose ¢y > 1. Thus, there exist constants
(3, c3 > 0 depending only on C1, ¢, Cs, co such that:

sup [P(Sn(y;) = 2) — P(S7(y;) = 2)| < Can™. (20)
JjelJ]
The third summand is bounded by applying Nazarov’s inequality. Denote for a random vector
V eR’:

V) := min Var(V7).
jel]

N

Observe for all ze Rand n > 0: P(Z = z) <P(Z1 = 1) + P(Zy = z — n). It follows

sup(P(Z =2 2)—P(Zy=zz2+¢)) <P(Z1 =2n) +supP(w < Zy <w+n+e). (21)

zeR weR

For the first term in , we apply @ to compute:
E[Z1] < A/E[Z?] = sup 4/ Var(SZ(y) — SZ(ly|n)) = v/nsup 4/ Var(Z;(y) — Z. n
2] < 4/BIZ3]) = sup\/Vax(S7 () = S (yha) = Vivsup y/VarlZi(y) = Zy([y1o)

< \/ﬁE[ilelg 1Zi(y) = Zi(lyln)]] < \/ﬁE[Sylelg |Xi(y) = Xi(|yln)[] < nKpd, = nz=°.(22)




26

Equation yields that P(Z; = n) < n_ln%_c. For the second term in , apply Nazarov’s
inequality [15] to deduce:

logn

supP(w < Za <w+n+¢e) < (+/2logd +2)(n+¢) supgfl(Sf([an)) <(n+e) -
weR yed

Plugging and into and setting n = ¢ delivers:

sup(P(Z =2 2)—P(Za=z+¢)) < e lnzC + En_%«/logn.
z€R

(23)

An analogous derivation exists for P(Zy > z +¢) — P(Z = z), so

sup |P(Z = 2) —P(Z2 = 2+ ¢)| < e n2 ¢ + en2+/logn. (24)
zeR
Recalling , and , conclude:
sup|P(T = 2) —P(Z = 2)| Se'n'™C+n% + e lnzc 6n_%«/log n. (25)

zeR
3_c¢

Choosing € =n1™2 log_i n, one concludes from that

1_¢
sup |[P(T' > 2z) —P(Z = z)| <ni 2login+n" =,
zeR

which completes the proof. O

F Proofs of §4

F.1 Proof of Theorem [4.4]

Proof. We provide the proof for £ = 1. By definition, 74, (p) € I'. Fix some M > 0 such that
Ly(v) + M < 1. Therefore, invoking Theorem it follows,

p (E;(%) < 1) >P (|Eg(fyo) — Ly(y0)| < M) —1 asn— . (26)

Additionally, suppose 0 < M’ < 1. By the continuity of L,(-), L,(v"(p)) = 2, hence, yet another
application of Theorem [3.6] entails that

P (i;w(p)) > 1) >P (\ng(p)) —9 < M’) 1 asn — . (27)

In view of continuity of f)g(), equations and combined, yield that
P(3n(p) € int(T")) = P (Eg(fm) <1, L(v'(p)) > 1) 1 asn— . (28)
This completes the proof of our first assertion. We leverage en route to our second assertion.
To that end, observe that following from Assumption L,(-) is differentiable at y(p) with its

derivative bounded by K. So there exists some K < K, such that we can use it to write out
first order Taylor expansion of L(-) about ~(p):

L(y) = L(v(p)) = K(v = 7(p)) + o(y = (p))- (29)
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From Theorem [3.6] it follows given € > 0 that there exist some G, > 0 and N, > 0 such that for
all n> N.:

logn
P | sup|L,(v)— L > G <e
<%9 () = L) s¢ﬁ)

If 4y, € T, then following from the continuity of L,,, we have L, (J,,) = 1 = L(7¢). Therefore,

logn (A ~ ~ log n)
P | sup|Ln(v) — L(7)| > Ge—22 | = P (A €T, [Ln(Fen) — LAen)| > G
<veg| (v) = L(v)| > G- NG ) e, |Ln(Ven) — L(Yen)| > G- Jn
~ ~ logn
> P (S €T Bn =l > K150 (30

where, K; := 2%, and in , we invoke . Combined with , yields

~ ~ logn
PG@ﬁFmewaﬁ-j%><6- (31)

Equations , jointly conclude the proof. O
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