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Abstract

The trade-off inherent in constant learning rate stochastic gradient descent (SGD) has
been well-documented empirically: larger learning rates often yield faster convergence, but
risk the possibility of exploding. However, the relevant question of an appropriate choice of
learning rate has rarely received systematic treatment; one often chooses learning schedules
based on domain knowledge and preliminary numerical experiments without theoretical
guidance. This question is intimately related to the concept of “edge of stability”, which
refers to a regime where the chain neither converges nor explodes. Despite rich literature on
deterministic gradient descent, the rigorous characterization of “edge of stability” for the
more ubiquitous SGD chains, remains an open question. In this paper, we formalize the
notion of the stability region, and develop theoretical guarantees for estimating the stability
region for SGD for a wide class of strongly convex objectives. We introduce a stochastic
version of Lyapunov exponent for SGD, which yields a practical, data-driven threshold for
admissible learning rates. Moreover, all of our theoretical results are backed by extensive
experiments. Collectively, these findings demonstrate a practically implementable as well as
theoretically valid way of choosing learning rate parameters in various problems, while also
paving the way to potential generalization to more complicated nonconvex landscapes.

1 Introduction

The dynamics of stochastic gradient descent (SGD) and related optimization methods have
been studied extensively from the perspective of stability, generalization, and convergence.
Foundational analyses such as [24] established stability guarantees for SGD and connected
them to generalization, while subsequent works have investigated SGD as an approximate
Bayesian inference procedure [34] and as a stochastic process with heavy-tailed gradient noise
[40]. More recently, SGD has also been analyzed as a random dynamical system with almost
sure convergence properties [20] and from a nonlinear time series perspective [28]. However, a
consistent theme with the majority of these literature is the lack of principled guidelines on how
to choose the (small enough) step-size that ensures the stability of the system. On the other
hand, choosing a learning rate that is too small leads to excruciatingly slow convergence. Edge
of stability analysis reflects the sweet spot between stability and convergence.

However, until recently, the edge of stability literature has largely focused on deterministic
gradient descent (GD). Conventional theoretical analyses typically focus on the inverted problem
of the stability threshold—namely, convergence guarantees at the sharpness threshold (i.e.,
the maximum eigenvalue of the Hessian) that guarantees stability for a GD algorithm with a
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given step size. The practically relevant problem of determining a problem and data-dependent
threshold of learning rate that ensures stability, is much less explored. Moreover, often stochastic
gradient descent is used over vanilla GD in an online setting, and much less is known about the
edge-of-stability threshold for the SGD algorithms. In this article, we bridge this gap between
theory and practice by proposing a theoretically valid, as well as practically implementable
data-driven estimate of edge-of-stability for SGD algorithms in strongly convex setting. Our
main contributions are as follows.

1.1 Main Contributions

Maximal expansion parameter. As a stepping stone to the notion of edge-of-stability,
we analyze the geometric moment contraction of the SGD dynamics and define the maximal
expansion parameter Lℓpγq as the maximal Lipschitz parameter for ℓ-step SGD dynamics given
ℓ P N` and step size γ ą 0. This parameter can be understood as the value of the weakest
possible contraction of the SGD functional with step-size γ. Leveraging tools from time-series
theory, we provide asymptotic theory for estimating Lℓpγq uniformly over γ;

Theorem 1.1 (Theorem 3.5, informal). Under standard regularity conditions, it follows that
supγPΓ |pLℓpγq ´ Lℓpγq| “ OPp

logn
?
n

q, where Γ is a compact set.

Towards the development of this result, we also borrow insights from high-dimensional statistics
literature to provide a sharp uniform moment bound on the partial sums of i.i.d. random
functions. We expect this result to be of independent interest.

Central limit theorems for the estimators pLn. Alongside our novel conception of the
maximal expansion parameter, we also establish the asymptotic distributions of the estimators
we define for the MEP. Along the way, we provide a general central limit theory for supremum of
random functions – a result that might also be of independent interest. The twin estimation
and inferential results lead naturally to a statistical understanding of edge of stability as in the
following.

Conceptual development and estimation of edge-of-stability for SGD. Developing on
the concept of maximal expansion parameter, we rigorously characterize the edge-of-stability,
denoted by γℓ, in terms of the smallest learning rate that pushes the l-step maximal expansion
parameter beyond 1, thereby making the chain explode. Our definition leads to a natural
estimation strategy for this edge-of-stability threshold, denoted by pγℓ,n.

Theory for the estimator pγn. To the best of our knowledge, this work is the first one to
provide finite-sample error bounds on the convergence property of γℓ,n; in particular, we prove
the following theorem.

Theorem 1.2 (Theorem 4.4, informal). Under standard regularity conditions, it follows that
|pγℓ,n ´ γℓ| “ OPp

logn
?
n

q.

Here we present two examples on linear regression and expectile regression respectively. The
detailed settings are deferred to Remark 2.6 and Section C. In particular, the exact forms of the
learning-rate boundary can be provided in the linear regression model, which are γ “ 2{3 and
γ “ 10{3 for the random samples generated from standard normal distribution and standard
uniform distribution, respectively, with p “ 2 and d “ 1. As shown in Figure 1, by our proposed
methodology, we can very accurately hit the boundary that we derived theoretically (denoted by
vertical dashed lines in Figure 1(a)).
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(a) Linear regression. (b) Expectile regression.

Figure 1: Examples for edge of stability. Green: N p0, 1q; Yellow: Unifr0, 1s. All the experiments
are repeated 30 times. The detailed setting is provided in Section C.

Connections with Lyapunov theory. Our framework admits a natural interpretation in
terms of Lyapunov theory once we adopt an asymptotic point of view on edge-of-stability. Indeed,
by letting ℓ Ñ 8 in the definition of the maximal expansion parameter, submultiplicativity and
Fekete’s lemma ensure that the limit:

λppγq :“ lim
ℓÑ8

1

ℓ
logLℓ

ppγq

exists. This quantity is precisely the maximal Lyapunov exponent associated with the stochastic
dynamics of SGD at learning rate γ: it measures the exponential rate at which moment distances
between trajectories grow (if positive) or decay (if negative). In particular,

λppγq ă 0 ñ exponential contraction of p-th moments,

λppγq ą 0 ñ exponential expansion of p-th moments.

Accordingly, the oracle edge of stability can be equivalently characterized as the zero-crossing of
this exponent:

γ8ppq :“ inftγ P Γ | λppγq ě 0u.

This viewpoint places our notion of edge-of-stability squarely within the classical Lyapunov
framework: SGD dynamics remain stable as long as the maximal Lyapunov exponent is negative,
and instability begins exactly at the point where it reaches zero. The construction aligns
with classical work on Lyapunov exponents for products of random matrices and random
dynamical systems, beginning with Oseledets’ multiplicative ergodic theorem [36] and subsequent
developments in the monographs of Bougerol and Lacroix [11] and Arnold [4]. In those settings,
the sign of the maximal Lyapunov exponent governs long-run stability of the system. Our moment-
based definition λppγq can be interpreted as an analogue tailored to stochastic approximation
schemes such as SGD, and places the edge-of-stability phenomenon within the same analytical
framework.

Notation. In this paper, we denote the set t1, . . . , nu by rns. The d-dimensional Euclidean
space is Rd. For a vector a P Rd, |a| denotes its Euclidean norm. For a matrix M P Rdˆm, |A|
denotes its Euclidean operator norm. For a random vector X P Rd, we denote }X} :“

a

Er|X|2s.
We also denote in-probability convergence, and stochastic boundedness by oP and OP respectively.
We write an À bn if an ď Cbn for some constant C ą 0, and an — bn if C1bn ď an ď C2bn for
some constants C1, C2 ą 0. Often we denote an À bn by an “ Opbnq. Additionally, if an{bn Ñ 0,
we write an “ opbnq. For a compact convex set Γ Ă Rd, we denote by intpΓq :“ tx P Γ : Dε ą

0 such that Bεpxq Ă Γu, where Bεpxq :“ ty : |x ´ y| ă εu is the ε-ball around x P Rd. In
particular, we denote the closed unit ball in Rd by B :“ B1p0q. Let LpRd,Rmq denote the set of
all smooth, measurable functions f : Rd Ñ Rm.
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2 Edge of stability: preliminaries

For a function G : Rd ÞÑ R, consider the following optimization problem:

θ˚ “ argmin
θPD

Gpθq, D Ă Rd is compact and convex,

and let ξi
i.i.d.
„ P be the innovations. Subsequently, all the probability statements are carried

out on the same measure space as P. Define F P C1. With an online stream of ξ1, ξ2, . . . , the
classical SGD algorithm estimates θ˚ via the recursion

θi “ F γ
ξi

pθi´1q, with F γ
ξi

pθq “ θ ´ γ∇gpθ, ξiq, i “ 1, 2, . . . , (1)

where g is a measurable function, and gp¨, xq P C2 satisfies Er∇gpθ, ξqs “ ∇Gpθq. Here γ ą 0 is
the constant learning rate. Before proceeding further, we introduce two key assumptions that
are ubiquitous in SGD literature, as well as heavily used throughout our article.

Assumption 2.1 (µ-strong convexity). There exists a µ ą 0 such that g is µ-strongly convex;
in other words, for all θ, θ1 P Rd,

@

m pθq ´ m
`

θ1
˘

, θ ´ θ1
D

ě µ|θ ´ θ1|2,

where mpθq :“ Er∇gpθ, ξqs, ξ „ P.

Strong convexity is a textbook assumption in the stochastic approximation literature [39, 37, 9].
It guarantees uniqueness of the minimizer and provides a quadratic lower bound that underlies
contraction arguments. This assumption is standard in convex SGD theory, and is satisfied by
canonical problems such as linear or regularized logistic regression. While it does not extend to
general nonconvex objectives, it is well aligned with our focus on strongly convex settings.

Assumption 2.2 (Stochastic Lipschitz continuity). Let p ě 1. There exists some constant
Np ą 0 such that, for all θ, θ1 P Rd,

∥∇g pθ, ξq ´ ∇g
`

θ1, ξ
˘

∥p ď Np|θ ´ θ1|.

Strong convexity guarantees uniqueness of the minimizer and provides a quadratic lower bound
on the objective. This ensures that the SGD iterates are attracted toward a single point
rather than drifting among multiple optima, and it underlies the contraction arguments that
follow. On the other hand, stochastic Lipschitz-ness controls the variability of the stochastic
gradients across different parameter values. This assumption enables us to bound deviations
of the stochastic gradients uniformly, which is essential when passing from local to global
statements in a concentration analysis. We remark that Assumptions 2.1 and 2.2 are standard
features of statistical analysis of convex stochastic optimization, and have appeared extensively
in [39, 37, 10, 13, 53, 43, 27].

2.1 Maximal expansion parameter: introduction

As discussed in §1, the learning rate γ ą 0 plays a fundamental role in the performance of SGD;
a larger value of γ may lead to θi being divergent. However, one can preclude the possibility of
explosion by theoretically analyzing the maximum possible contraction after a given number
of iterates from the current instance. We formalize this insight by borrowing the notion of
contractive maps in dynamic systems defined by [46];
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Definition 2.3 (MEP-ℓ). The p-th Maximal Expansion Parameter of lag 1 (MEP-1) is defined as

Lppγq :“ sup
θ‰θ1

E
”∣∣∣F γ

ξi
pθq ´ F γ

ξi
pθ1q

∣∣∣pı
|θ ´ θ1|p

. (2)

Generalizing (2), for ℓ P N`, the ℓ-lag maximal expansion (MEP-ℓ) can be defined as:

Lℓ
ppγq :“ sup

θ‰θ1PD

E
”

|F γ
ξi`ℓ´1:ξi

pθq ´ F γ
ξi`ℓ´1:ξi

pθ1q|
p
ı

|θ ´ θ1|p
,

where the composite map F γ
pa`bq:ap¨q :“ F γ

a`b ˝ . . . ˝ F γ
a`1 ˝ F γ

a p¨q.

The quantity Lppγq can be interpreted as the maximal possible value of the Lipschitz constant
in equation (17) of [28]; as we will discuss in §4, this interpretation readily leads to a notion of
edge-of-stability through the need to ensure geometric moment contraction. However, before
proceeding further, we take a pause here to make a crucial observation regarding the tractability
of the maximal expansion parameter.

The maximal expansion parameter, as is defined, concerns computing a supremum over pairs of
distinct points θ, θ1. This form may appear cumbersome for both analysis, as well as any direct
approach to estimation. However, in Lemma 2.4, we transform the corresponding sample version
into a tractable quantity through equivalent characterization through ∇θF

γ
ξi

pθq for all ξi and θ.

Lemma 2.4. Let D Ă Rd be a compact convex set and γ ą 0 be given. Suppose F γ
ξi

pθq be as in
Equation (1). Then, under Assumption 2.2 it follows that:

sup
θ‰θ1PD

1

n

n
ÿ

i“1

∣∣∣F γ
ξi

pθq ´ F γ
ξi

pθ1q

∣∣∣p
|θ ´ θ1|p

“ sup
θPD

sup
u:|u|“1

1

n

n
ÿ

i“1

ˇ

ˇ∇θF
γ
ξi

pθqu
ˇ

ˇ

p
. (3)

Additionally, it follows that

sup
θ‰θ1PD

E
”∣∣∣F γ

ξi
pθq ´ F γ

ξi
pθ1q

∣∣∣pı
|θ ´ θ1|p

“ sup
θPD

sup
uPRd:|u|“1

E
”∣∣∣∇θF

γ
ξi

pθqu
∣∣∣pı .

Remark 2.5. Virtually the same arguments as Lemma 2.4 allow us to write

sup
θPD

sup
uPRd:|u|“1

1

n

n
ÿ

i“1

”∣∣∣∇θF
γ
ξi

pθqu
∣∣∣pı “ sup

θPD
lim
δÑ0

sup
v:|v|“1

1

n

n
ÿ

i“1

|F γ
ξi

pθq ´ F γ
ξi

pθ ` δvq|p

|δ|p
. (4)

Equation (4) is especially useful in situations where the computation of ∇θF
γ
ξi

pθq is intractable.
It allows us perform numerical differentiation by considering a fine-grained mesh around θ in
different directions.

Remark 2.6 (Range of γ in linear regression). Consider the linear regression model

Yi “ XT
i θ ` ϵi,

where θ P Rd is the population parameter vector of interest and ϵi P R are i.i.d. random noise
independent of tXiuiě1. In this setting, the Assumption 2.1 and Assumption 2.2 holds with
µ “ λmintEpXiX

J
i qu and N2 “ supδPRd:|δ|“1 : ∥XiX

J
i δ∥22, where λmint¨u refers to the smallest

eigenvalue. Consequently, Theorem 2.2 in [28] ensures L2pγq ă 1 as long as

0 ă γ ă
2λmintEpXiX

T
i qu

supδPRd:|δ|“1 : ∥XiXT
i δ∥22

.
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It can be demonstrated that this range reaches the optimum in general. By this expression,
for d “ 1, the boundary of γ is 2{3 « 0.67 when Xi follows the standard normal distribution
N p0, 1q and is 10{3 « 3.3 when Xi follows the standard uniform distribution U r0, 1s.

Lemma 2.4 allows us to consider a supremum over a single parameter, boosting tractability by
eliminating dependence on arbitrary pairs. In lieu of Lemma 2.4, one can approach estimating
Lppγq (and in general Lℓ

ppγqq by way of the corresponding empirical versions:

pLn
p pγq :“ sup

θPD
sup

u:|u|“1

1

n

n
ÿ

i“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p ,

and in general for any ℓ P N`, define pLℓ,n
p pγq as:

sup
θ‰θ1PD

1
n

řn
i“1 |F γ

ξi`ℓ´1:ξi
pθq ´ F γ

ξi`ℓ´1:ξi
pθ1q|

p

|θ ´ θ1|p
. (5)

Following from Lemma 2.4, we would also like to introduce a similar notion for Lℓ
ppγq and its

sample version pLℓ,n
p pγq:

Lℓ
ppγq “ sup

θPD
sup

u:|u|“1
E
“∣∣∇θpFpi`ℓ´1q:ipθqqu

∣∣p‰ “ sup
θPD

sup
u:|u|“1

E

«∣∣∣∣∣
˜

ℓ
ź

k“1

∇θF
γ
ξi`ℓ´k

pθl´kq

¸

u

∣∣∣∣∣
pff

, and,

pLℓ,n
p pγq “ sup

θPD
sup

u:|u|“1

1

n

n
ÿ

i“1

∣∣∇θpFpi`ℓ´1q:ipθqqu
∣∣p “ sup

θPD
sup

u:|u|“1

1

n

n
ÿ

i“1

∣∣∣∣∣
˜

ℓ
ź

k“1

∇θF
γ
ξi`ℓ´k

pθl´kq

¸

u

∣∣∣∣∣
p

where θp0q “ θ and for k ą 0, θpkq “ F γ
ξi`k´1

pθpk´1qq.

Subsequently, we primarily focus on Lppγq and its estimator pLn
p pγq. A naive treatment of the

general ℓ-case can be understood to be quite similar; however, we mention another interesting
property of the function MEP-ℓ that renders the general case practically trivial after one has
considered the ℓ “ 1 scenario. In particular, it follows that the sequence tLℓ

ppγquℓPN`
is

submultiplicative.

Proposition 2.7. Set p ě 1 and γ P Γ, and let k, ℓ P N. Then:

Lℓ`k
p pγq ď Lk

ppγq ¨ Lℓ
ppγq.

Armed with these additional insights, in the next section we develop an asymptotic theory for
pLn
p pγq.

3 Theoretical results on maximal expansion parameters

Before stating our main results, we collect a set of regularity assumptions that ensure both
well-posedness of the optimization problem and tractability of the analysis. Some of these are
standard in the study of SGD, but we briefly comment on their roles.

Assumption 3.1 (Compact and convex domains). The parameters θ and γ are confined to
compact convex domains D Ă Rd and Γ “ ra, bs, for b ą a ą 0.



7

Compactness of the parameter and learning-rate domains is not intrinsic to SGD, but serves
as a standard technical device in empirical process theory. It guarantees well-posedness when
taking suprema over continuous index sets and facilitates the use of covering arguments and
δ-nets. Although unconstrained optimization problems such as linear regression are typically
posed on Rd, in practice SGD iterates remain bounded due to regularization, explicit projection,
or simply because divergence leads to algorithmic instability (see, e.g., projection-based variants

of SGD in [35], [26]). Finally, the assumption that a^ b ą 0 excludes the trivial case Lℓ,n
p pγq “ 1,

where the SGD chain does not move at all.

Assumption 3.2 (Lipschitz property, B.1, informal). There exists a constant Kp ă 8 such that
the operator norm of ∇θF

γ
ξ pθq fulfills a stochastic Lipschitz property with respect to θ and γ.

In order to control the first derivative of the SGD process, we must bound second order derivative
behavior of the function, giving rise Assumption 3.2. This condition is satisfied by many practical
smooth models, and rules out only highly irregular loss landscapes.

Assumption 3.3 (2p-moment bound). Fix p ě 1. Assume

A :“ E

«

sup
θPD,γPΓ

sup
u:|u|“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣2pff ă 8.

Finite 2p-th moments of the stochastic gradients strengthen Assumption 2.1 and are standard
when deriving concentration inequalities for SGD. In our setting, this condition ensures that
deviation inequalities for the empirical expansion parameter hold with high probability, which is
essential for establishing nonasymptotic confidence statements about the edge of stability.This
requirement is reasonable in practice for smooth models where gradients have sub-Gaussian or
sub-exponential tails.

Assumption 3.4 (Differentiability). Fix p ě 1. We assume that B
BγL

ℓ
ppγq is defined for all γ P Γ,

and that there exists some Kp ą 0 such that supγPΓ

∣∣∣ B
BγL

ℓ
ppγq

∣∣∣ ď Kp.

Differentiability of Lγ
ℓ ppq with respect to γ ensures that the stability threshold behaves regularly

in a neighborhood of the edge. This smoothness enables a first-order expansion around γℓppq,
which is the key step in transferring concentration of pL

γ

ℓ,nppq into consistency of pγℓ,nppq.

3.1 Asymptotics of MEP-ℓ

In this section, we control the estimation error of pLn
p pγq uniformly over γ P Γ, setting the stage

of eventual estimation of the edge-of-stability upon its definition. To that end, we recognize that
pLn
p pγq “ supθPD

1
n

řn
i“1

∣∣∣∇θF
γ
ξi

pθq

∣∣∣p as the L8 norm of mean of random functions. Subsequently,

adapting the tools of [16], we provide a general result controlling the partial sums of i.i.d. random
functions.

Theorem 3.5. Let Φ Ă Rd be a compact convex set and X1pφq, . . . , Xnpφq be i. i.d. random
functions with Xi : Rd ÞÑ Rm for some d,m ě 1. For p ě 1, denote

KΦ :“ E

«

sup
φ‰φ1PΦ

|Xipφq ´ Xipφ
1q|p

|φ ´ φ1|p

ff

ă 8, and (6)

AΦ,p :“ E

«

sup
φPΦ

|Xipφq|2p
ff

ă 8. (7)
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Let the n-th partial sum be defined as Sn,ppφq :“
řn

i“1 |Xipφq|p. Then it holds that:

E

«

sup
φPΦ

|Sn,ppφq ´ E rSn,ppφqs|

ff

“ O
`?

nlog n
˘

,

where Op¨q hides constants solely related to p, d,m,Φ and µ.

Theorem 3.5, to the best of our knowledge, is the first such result controlling the moments of
sums of random function. As such, it may be of independent interest. Importantly, due to the
compactness of Φ, the mean discrepancy between the L8 norm of empirical and oracle average,
decays at the near-parametric rate Op

a

plog nq{nq.

This general result serves as the workhorse for bounding the estimation error of pLn
p pγq. As an

application of Theorem 3.5, we recover the following guarantee on pLn
p pγq, and more generally

pLℓ,n
p pγq.

Theorem 3.6. Fix ℓ P N`, and recall Lℓ
ppγq and pLℓ,n

p pγq from Definition 2.3 and (5) respectively.
Then, under Assumptions 2.1-2.2 and 3.1-3.3, it holds that:

E

«

sup
γPΓ

∣∣∣pLℓ,n
p pγq ´ Lℓ

ppγq

∣∣∣ff “ O

ˆ

log n
?
n

˙

.

Establishing such guarantees is essential: without quantitative control of the estimation error,
any attempt to approximate the edge of stability would remain heuristic. Theorem 3.6 provides
precisely this control, paving the way for our eventual goal: precisely estimating edge-of-stability.

3.2 Central limit theory of L̂ℓ,n
p pγq

In this section, we expand on Theorem 3.6 to facilitate statistical inference with L̂. Similar to
Theorem 3.5, we start off with a general result.

Theorem 3.7. Consider a probability space pΩ,A,Pq, and for i P rns, let Xi : Ω Ñ LpRd,Rmq

be i.i.d. random elements on LpRd,Rmq for some d,m ě 1. Denote:

Snp¨q :“
n
ÿ

i“1

pXip¨q ´ ErXip¨qsq.

On the same probability space, let Z1, . . . , Zn be an i.i.d. mean-zero Rm-valued Gaussian random
field on Rd, such that for all x P Rd, Zipxq „ Np0,CovpXipxqqq, and

CovpZipxq, Zipyqq “ CovpXipxq, Xipyqq.

Denote SZ
n p¨q :“

řn
i“1 Zip¨q. Let Φ Ă Rd be a compact convex set. Then, under the conditions of

Theorem 3.5, it holds that

sup
zPR

∣∣∣∣Ppsup
xPΦ

|Snpxq| ě zq ´ Ppsup
xPΦ

∣∣SZ
n pxq

∣∣ ě zq

∣∣∣∣ À n´C ,

where, À and C hide constants depending solely on KΦ and AΦ,p.
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As with Theorem 3.5, this statement is more general than the focus of this paper, but can be
applied in order to derive central limit theorems for the estimators of Lℓ

ppγq and γℓppq.

Theorem 3.8. Fix ℓ P N`, and recall Lℓ
ppγq and pLℓ,n

p pγq from Definition 2.3 and (5) respectively.

Additionally, set Snpγq “ nppLℓ,n
p pγq ´ Lℓ

ppγqq and SZ
n pγq in accordance with its definition in the

theorem statement of Theorem 3.7. Then, under Assumptions 2.1-2.2 and 3.1-3.3, it holds that:

sup
zPR

ˇ

ˇP
`

sup
γPΓ

∣∣∣pLℓ,n
p pγq ´ Lℓ

ppγq

∣∣∣ ě z
˘

´ P
`

sup
γPΓ

∣∣SZ
n pγq

∣∣ ě nz
˘ˇ

ˇ À n´C ,

where À and C hide constants depending solely on KΦ and AΦ,p.

The proof of Theorem 3.8 follows directly from Theorem 3.7, and hereby omitted.

In order to practically use the Theorem 3.8 for statistical inference without apriori knowledge of
the corresponding asymptotic covariances, one can implement multiplier bootstrap [14], whose
theoretical validity can be established likewise as in the above results. We also empirically
demonstrate the validity of the Gaussian approximation in the case of linear regression in
Figure 2.

4 Edge of stability: definition and estimation

In this section, we endeavor to precisely characterize the edge of stability through the explosions
of MEP-ℓ. Subsequently, we propose a corresponding version of data-driven edge-of-stability, and
provide finite sample error bounds.

Definition 4.1 (EOS-ℓ). Fix ℓ P N`. The oracle edge-of-stability of lag ℓ (EOS-ℓ) is defined as

γℓ ppq :“ inf
!

γ ą 0 | Lℓ
ppγq ě 1

)

.

Clearly, Lℓ
pp0q “ 1. By recalling Assumption 3.1, γℓppq can be interpreted as smallest γ ą 0 such

that the geometric moment contraction no longer holds for the SGD dynamics. As with Lℓ
ppγq,

we ignore the subscript ℓ whenever ℓ “ 1.

Remark 4.2. It is not yet evident why γℓppq even exists. To ensure its existence, we proceed via
the following argument.

1. Recall Theorem 2.2 in [28]; under Assumptions 2.1-2.2, there exists a function κ : R` ÞÑ R`,
such that for 0 ă γ ă κppq, we have Lppγq ă 1. Here we remark that [28] dealt with the
p ą 1 case; which however can imply the case with p “ 1 by Hölder’s inequality as shown
in [47].

2. Since gp¨, ξq P C2, by the Lebesgue Dominate Convergence Theorem (DCT), limγÑ8 Lppγq{γp “

supθ supuPRd:|u|“1 Er|∇2
θgpθ, ξqu|ps.

Conditions 1 and 2 above ensure that γℓppq P Γ exists.
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Definition of the empirical version of γℓppq, denoted by pγℓ,nppq, is not straight-forward, since the
guarantees in [28] extend only to Lℓ

ppγq, and not to its empirical version. However, Theorem 3.6

ensures that for all γ P Γ for any compact set Γ, Lℓ
ppγq is closely approximated by its empirical

version pLℓ,n
p pγq. Therefore, it is conceivable to leverage Theorem 3.6 to obtain a precisely-defined

compact convex set Γ, such that, with high probability, pLℓ,n
p pγq crosses 1 on intpΓq. More

formally, by Theorem 2.2 in [28] and continuity of Lℓ
pp¨q ă 1, there exists some δ ą 0 and γ0 ą 0

such that Lℓ
ppγq ă 1 for all γ P Bδpγ0q. On the other hand, let γ:

ℓ ppq :“ inf
␣

γ ą 0 | Lℓ
ppγq ą 2

(

.

Similar to Remark 4.2, γ:

ℓ ppq is well-defined. Then we proceed to define the edge-of-stability at
lag ℓ.

Definition 4.3. Denote Γ :“ rγ0, γ
:

ℓ ppqs. The oracle EOS-ℓ is defined as

pγℓ,nppq :“ min
!

γ P Γ | pLℓ,n
p pγq ě 1

)

.

Note that, by definition of Γ, it also follows that γℓppq P intpΓq. We establish the following

conventions for the edge-cases: if supγPΓ
pLℓ,n
p pγq ă 1, then pγℓ,nppq “ 0; on the other hand, if

infγą0
pLℓ,n
p pγq “ 1, then pγℓ,nppq “ 8. In fact, in the following we prove that these edge cases

have vanishing probability, and consequently, we recover the asymptotic consistency of γℓ,nppq

as an estimator of γℓppq.

Theorem 4.4. Fix ℓ P N`, and recall γℓppq and pγℓ,nppq from Definitions 4.1 and 4.3 respectively.
Then, under Assumptions 2.1-2.2 and 3.1-3.3,

Pppγℓ,nppq P intpΓqq Ñ 1 as n Ñ 8.

Additionally, it holds that:

|pγℓ,nppq ´ γℓppq| “ OP

ˆ

log n
?
n

˙

.

To the best of our knowledge, Theorem 4.4 provides the only, provably consistent estimator of
EOS-ℓ in the context of SGD. Beyond theoretical interest, the practical relevance of estimator
cannot be overstated; pγℓ,nppq indicates a data-driven threshold of the learning rate, beyond which
the SGD dynamics explode with high probability. Moreover, employing multiplier bootstrap and
the central limit theory (Theorem 3.8), it is possible to produce asymptotically valid confidence
intervals for γ̂ℓ,nppq; We defer the technical details for future work.

5 Simulation

In this section, we empirically characterize the edge-of-stability region, and assess its statistical
optimality. In particular, in §5.1, we estimate the contraction ratio Lppγq1{p as a function of γ
and identify the smallest γ at which contraction fails. The resulting empirical boundary closely
matches our theoretical prediction, demonstrating that the proposed “edge of stability” is tight.
Moving on, in 5.2, we exhibit the asymptotic gaussianity of our estimator pL and pγ. Additional
numerical experiments are provided in Appendix §C.

5.1 Tightness of “edge of stability”

We consider the data generating mechanism Yi “ XJ
i θ

˚ ` ϵi, and let ξi “ tXi, yiuiPN`
denote

the observed sequential data and θ˚ is the unknown population parameter of interest. For the
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purpose of this study, we consider linear regression with squared loss. Let the true feature
vector X P Rd is drawn either from a Gaussian design N p0, Idq, and the noise ξ is drawn from
a standard Gaussian distribution, independent of tXiuiPN. We vary the ambient dimension
d P t1, 2, 3, 5, 10u, the composition lag l P t1, 5, 10u, and the moment index p P t2, 4u. We sweep
γ on a grid Γnorm “ t0.01, 0.02, . . . , 1.00u under the Gaussian design, and for the Uniform design
we use Γunif “ t0.01, 0.02, . . . , 4.00u to account for the different curvature scales observed in
practice.

Across all configurations, the curve γ ÞÑ Lppγq1{p exhibits a clear elbow: it decreases from 1,
reaches a minimum, then increases, crossing 1 at the stability edge pγ, after which it grows rapidly
(diverging). Since this transition occurs well within the plotted range, pγ is visually sharp and
can be localized to a narrow interval.

In Figure 3, subplot (a) shows that increasing p P t1, 2, 3, 5, 10u shifts the crossing leftward, i.e.,
stronger tail sensitivity yields a smaller admissible step-size, consistent with [28]. Subplot (b)
shows that increasing lag ℓ enlarges the stable region: by sub-multiplicativity,

Lℓ
ppγq ď Lppγqℓ,

larger ℓ pushes ratios further below 1 on the stable side and further above 1 on the unstable
side, allowing larger γ while maintaining contraction. Subplot (c) shows that the stable region
contracts as the dimension d increases. Moreover, the empirical edge pγℓ,nppq (yellow curve in (a),
red curve in (b)) closely matches the theoretical boundary in Remark 2.6 for d “ 1 and ℓ “ 1,
namely pγℓ,np2q “ 2{3 for Xi „ N p0, 1q and pγℓ,np2q “ 10{3 for Xi „ Unifr0, 1s. Overall, Figure 3
validates that tγ : Lppγq ă 1u is a single interval starting at 0, whose boundary is captured by
the unique intersection with level 1, and whose dependence on pp, ℓ, dq matches the theoretical
predictions.

5.2 Gaussianity of pL

We also provide plots demonstrating the validity of Theorem 3.8. As with §5.1, we consider the
linear regression setting with the feature vector X P Rd drawn from a Gaussian design N p0, Idq,
and the noise ξ drawn from a standard Gaussian distribution, independent of tXiuiPN. Setting
n “ 105, ℓ “ 1 and p “ 2, we use Q-Q plots with 1000 i.i.d. samples to demonstrate that for
d P t2, 6u and γ P t0.5, 0.25u, pLℓ,n

p pγq is asymptotically normal. We have already demonstrated

in the simulations in Figure 3 and proved in Theorem 3.6 that pLℓ,n
p pγq is consistent, meaning

that pLℓ,n
p pγq ´ Lℓ

ppγq is asymptotically mean zero normal.

(a) d “ 2, γ “ 0.5 (b) d “ 2, γ “ 0.25 (c) d “ 6, γ “ 0.5 (d) d “ 6, γ “ 0.25

Figure 2: Q-Q plots demonstrating asymptotic normality of the estimator for the MEP.
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6 Conclusions and Discussion

In this work, we provided a principled characterization of the stability region of SGD with
constant learning rates. By introducing the notion of the maximal expansion parameter and
connecting it to Lyapunov exponents, we established a rigorous definition of the edge-of-stability
and developed a consistent, data-driven estimator for identifying admissible learning rates. Our
theoretical results, complemented by extensive simulations on linear and expectile regression,
confirm that the proposed framework accurately captures the transition from stable to unstable
regimes. These findings supply both a theoretical foundation and a practical tool for selecting
constant step sizes in online learning algorithms.

Looking ahead, the observed dependence of stability thresholds on factors such as dimension,
lag, and moment index underscores the importance of adaptive, data-driven tuning strategies,
rather than relying on fixed heuristics. Moreover, by situating SGD stability with the Lyapunov
exponent in dynamic systems, our work lays the groundwork for unifying deterministic and
stochastic stability analyses, potentially leading to sharper guidelines for learning rate selection
across a broad range of optimization problems.

(a) d “ 1, ℓ “ 1, p P t1, 2, 3, 5, 10u (b) d “ 1, ℓ P t1, 2, 3, 5, 10u, p “ 2 (c) d “ t1, 3, 5, 10u, ℓ “ 10, p “ 2

Figure 3: Linear regression with Xi „ N p0, Idq. Each panel plots pLℓ
ppγq1{p versus the constant

step size γ for linear regression. Experimental factors and grids follow the setup marked in
subplot labels.

Software and Data

All the relevant reproducible codes can be found in the anonymous Github repository. All the
theoretical results and assumptions are rigorously proved and validated in the Appendix §D-§F.1.
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This appendix is devoted to additional discussion, collection of mathematical arguments and
additional simulation results. In particular, in §A we discuss some other approaches to edge-of-
stability analysis, as well as the existing gaps in the literature. In §D-§F.1, we provide detailed
proofs to our theoretical results.

A Related Literature

The edge of stability phenomenon was first systematically identified by [17] in the context of neural
networks, showing empirically that GD trajectories typically operate at the stability threshold.
Subsequent work such as [2] extended these insights to simple neuron models, establishing that
edge of stability behavior arises even in minimal architectures. These contributions built on a
long line of optimization analyses [9, 6] that emphasized the importance of step-size selection
and convergence guarantees.

Several papers seek to isolate the mechanisms behind the edge of stability using simplified or
tractable models. [5] developed a theoretical framework for GD at the edge of stability, while [54]
and [31] employed minimalist examples to clarify the core dynamics. Variants such as diagonal
linear networks [22] and two-step updates [12] further illuminate how the phenomenon arises
across different formulations. Parallel lines of work have also explored how normalization or
regularization mechanisms affect optimization stability, e.g. [29] on batch normalization and [7]
on implicit gradient regularization.

Another strand of work interprets the edge of stability through the geometry of the loss landscape.
Progressive sharpening along training trajectories was analyzed by [42], while [41] provided
a bifurcation-theoretic view. More recent work has refined these ideas via high-dimensional
analysis [1], sharpness-aware methods [32], and curvature-aware learning-rate tuning [38]. These
developments resonate with broader optimization perspectives on adaptive learning rates [48]
and comparisons of adaptive methods with SGD [51].

Beyond stability, the edge of stability has been connected to implicit bias and generalization. For
instance, [44] and [19] study logistic regression at the edge of stability, highlighting the implicit
regularization induced by GD. Related work considers minimax optimal convergence [52] and
generalization in decentralized SGD settings [49]. This complements a broader literature on
benign overfitting and generalization in over-parameterized models [8, 50, 55, 30], where stability
considerations play a central role.

While the majority of results concern deterministic GD, several papers have begun exploring
extensions. [3] revisited the notion of stability under stochastic gradient descent, whereas [18]
and [21] examined adaptive and Adam-type methods, respectively. Other directions extend
edge of stability analysis to deep linear networks [23] and multi-fractal loss landscapes [33].
These developments connect naturally to classical work on stochastic approximation [45, 25]
and continue the trend of relating stochastic dynamics to stability properties.

Despite this growing body of work, the focus has remained predominantly on GD. By contrast,
our work develops a systematic analysis of edge of stability in the context of stochastic gradient
descent, providing a sharper understanding of how stochasticity modifies, stabilizes, or destabilizes
the classical GD picture. In this way, we broaden the scope of the edge of stability framework to
settings of practical relevance.
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B Detailed Assumptions

We expand upon the definitions in the main text for which a concise form was given, giving their
full details and the explanation for those forms and their inclusions.

Assumption B.1 (Lipschitz property). We assume that there exists a constant Kp ă 8 such
that the operator norm of ∇θF

γ
ξ pθq adheres to the following property with respect to θ and γ:

E

«

sup
pθ,γ,uq‰pθ1,γ1,u1qPDˆΓˆB

∣∣∣∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p ´

∣∣∣∇θF
γ1

ξi
pθ1qu1

∣∣∣p∣∣∣
p|θ ´ θ1| ` |γ ´ γ1| ` |u ´ u1|qp

ff

ď Kp

Assumption B.2 (2p-moment bound, 3.3 fully explained). Fix p ě 1. Assume

A :“ E

«

sup
θPD,γPΓ

sup
u:|u|“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣2pff ă 8.

Finite 2p-th moments of the stochastic gradients strengthen Assumption 2.1 and are standard
when deriving concentration inequalities for SGD. Higher-moment assumptions of this type are
routinely employed in empirical process theory (see, e.g., [16]) to obtain exponential tail bounds,
and they also appear in modern analyses of statistical inference for SGD [13]. In our setting,
this condition ensures that deviation inequalities for the empirical expansion parameter hold
with high probability, which is essential for establishing nonasymptotic confidence statements
about the edge of stability. While stronger than bounded variance, this requirement remains
reasonable in practice for smooth models where gradients have sub-Gaussian or sub-exponential
tails.

Bounding higher-order derivatives of the stochastic update map is not a universal assumption,
but is a reasonable strengthening of smoothness. In the SGD chain, its contraction dynamics are
characterized by its the first derivative of the iterate function. In order to control this derivative,
we must bound second order derivative behavior of the function, giving rise Assumption 3.2.
Although quite strong, this condition is satisfied by many smooth models of practical interest
(e.g. generalized linear models), and rules out only highly irregular loss landscapes.

C Extended Simulations

In this section, we expand upon Section 5 to empirically characterize the edge-of-stability region,
and assess its optimality. Across a suite of synthetic settings (linear and expectile regression
with varying dimension, lag, and data distributions), we estimate the contraction ratio Lppγq1{p

as a function of γ and identify the smallest γ at which contraction fails. The resulting empirical
boundary closely matches our theoretical prediction, demonstrating that the proposed “edge
of stability” is tight. Taken together, these results validate the theory and provide actionable
guidance for selecting constant step sizes that guarantee convergence in practice.

We first demonstrate our result focusing on the following data generating mechanism:

Yi “ XJ
i θ

˚ ` ϵi,

and let ξi “ tXi, yiuiPN`
denote the observed sequential data and θ˚ is the unknown population

parameter of interest. We study two convex models: (i) linear regression with squared loss

G1pθq “ Eξi“pXi,yiq„Π2
pXJ

i θ ´ yiq
2{2,
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where F γ
ξi

pθq takes the following form:

F γ
ξi

pθq “ θ ´ γXipX
J
i θ ´ yiq,

and (ii) expectile regression with the asymmetric least-square loss

G2pθq “ Eξi“pXi,yiq„Π2

ˇ

ˇw ´ 1tXJ
i θ´yią0u

ˇ

ˇpXJ
i θ ´ yiq

2{2,

with weight w P p0, 1q, and corresponding F γ
ξi

pθq is given by

F γ
ξi

pθq “ θ ´
ˇ

ˇw ´ 1tXJ
i θ´yią0u

ˇ

ˇXipX
J
i θ ´ yiq.

The feature vector X P Rd is drawn either from a Gaussian design N p0, Idq or a product
Uniform design Unifpr0, 1sdq and the noise ξ is drawn from standard Gaussian distribution,
independent of tXiuiPN. We vary the ambient dimension d P t1, 2, 3, 5, 10u, the composition
lag l P t1, 5, 10u, and the moment index p P t2, 4u. For linear regression we sweep γ on a grid
Γnorm “ t0.01, 0.02, . . . , 1.00u under the Gaussian design, and for the Uniform design we use
Γunif “ t0.01, 0.02, . . . , 4.00u to account for the different curvature scales observed in practice.

Across all configurations, the mapping γ ÞÑ Lppγq1{p exhibits a pronounced elbow shape, where
the estimated ratio initially declines from 1, reaches a minimum, and then reverses, crossing 1 at
the stability edge; beyond the crossing it grows rapidly, ultimately diverging. The transition
occurs well within the plotted range, so the edge pγ is visually stable and can be localized to a
narrow interval.

In Figure 3 and Figure 4, subplots (a) demonstrate, that increasing the moment index p P

t1, 2, 3, 5, 10u shifts the crossing leftward while keeping the minimum shallow. This indicates that
heavier emphasis on tail deviations tightens the admissible step-size, which aligns with the result
proposed in [28]. Varying the lag ℓ in subplots (b) of Figure 3 and Figure 4 primarily enlarge the
edge of stability as lag ℓ increases: for any fixed γ, sub-multiplicative gives Lℓ

ppγq ď Lppγqℓ, so
increasing ℓ pushes ratios further below on the stable side and further above 1 on the unstable
side. Thus the increase of ℓ allows larger γ to ensure the contraction. The dimensional study
in subplots (c) of Figure 3 and Figure 4 shows the early contraction of the stable region as d
increases. In addition, the empirical edge pγℓ,nppq extracted at the yellow curve in subplots (a)
and red curve in subplots (b) closely matches the theoretical boundary proposed in Remark 2.6
for d “ 1 and ℓ “ 1 case, where pγℓ,np2q « 2

3 for Xi „ N p0, 1q and pγℓ,np2q « 10
3 for Xi „ Unifr0, 1s.

As a conclusion, the results displayed in Figure 3 and Figure 4 validate that the stability set
γ : Lppγq ă 1 is a single interval starting at 0, its boundary is accurately captured by the unique
intersection with level 1, and its dependence on p, ℓ, and d follows the theoretical predictions.

Figure 5 shows that expectile regression mirrors the linear case: the edge of stability (the unique
crossing of Lppγq1{p with level 1) decreases as the moment index p increases and increases
as the lag ℓ grows. The first trend follows the p-sensitivity of the contraction metric via
Hölder’s inequality. The second follows from the sub-multiplicativity of the maximal expansion
parameter (MEP), Lp,ℓ`kpγq ď Lp,ℓpγqLp,kpγq, which strengthens contraction on the stable side
and steepens growth on the unstable side with right shifting the crossing in γ. The same
qualitative dependencies appear for expectile regression for dimension d: the edge moves left
as d grows (a smaller stable γ). Taken together, these curves confirm that the qualitative and
quantitative dependence of the stability edge on p, ℓ and d persists beyond squared loss.
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(a) d “ 1, ℓ “ 1, p P t1, 2, 3, 5, 10u (b) d “ 1, ℓ P t1, 2, 3, 5, 10u, p “ 2 (c) d “ t1, 3, 5, 10u, ℓ “ 10, p “ 2

Figure 4: Linear regression with Xi „ Uniftr0, 1sdu. Each panel plots pLℓ
ppγq1{p versus the

constant step size γ for linear regression. Experimental factors and grids follow the setup marked
in subplot labels.

(a) d “ 1, ℓ “ 1, p P t1, 2, 3, 5, 10u (b) d “ 1, ℓ P t1, 2, 3, 5, 10u, p “ 2 (c) d “ t1, 3, 5, 10u, ℓ “ 1, p “ 2

Figure 5: Expectile regression with Xi „ N tp0, 1qu and weight ω “ 0.2. Each panel
plots pLℓ

ppγq1{p versus the constant step size γ for expectile regression and is averaged over 30
experiments. Experimental factors and grids follow the setup marked in subplot labels.
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D Proofs of §2

D.1 Proof of Lemma 2.4

Proof. W.l.o.g., we consider the case ℓ “ 1; the case for general ℓ P N is similar. Note that since
F γ
ξ p¨q P C1, it follows that

sup
θPD

sup
u:|u|“1

1

n

n
ÿ

i“1

ˇ

ˇ∇θF
γ
ξi

pθqu
ˇ

ˇ

p
ď sup

θPD

1

n

n
ÿ

i“1

lim sup
θ1Ñθ

ˇ

ˇF γ
ξi

pθq ´ F γ
ξi

`

θ1
˘
ˇ

ˇ

p

ˇ

ˇθ ´ θ1
ˇ

ˇ

p ď sup
θ‰θ1PD

1

n

n
ÿ

i“1

ˇ

ˇF γ
ξi

pθq ´ F γ
ξi

`

θ1
˘
ˇ

ˇ

p

ˇ

ˇθ ´ θ1
ˇ

ˇ

p .

(8)

On the other hand, by Jensen’s inequality and the convexity of D,

sup
θ‰θ1PD

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ
F γ
ξi

pθq ´ F γ
ξi

pθ1q

ˇ

ˇ

ˇ

p

|θ ´ θ1|
p “ sup

θ‰θ1PD

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ş1
0

B
BtF

γ
ξi

pθ1 ` tpθ ´ θ1qqdt
ˇ

ˇ

ˇ

p

|θ ´ θ1|
p

ď sup
θ‰θ1PD

1

n

n
ÿ

i“1

ş1
0

ˇ

ˇ

ˇ

B
BtF

γ
ξi

pθ1 ` tpθ ´ θ1qq

ˇ

ˇ

ˇ

p
dt

|θ ´ θ1|
p

“ sup
θ‰θ1PD

1

n

n
ÿ

i“1

ş1
0

ˇ

ˇ

ˇ
∇θF

γ
ξi

pθ1 ` tpθ ´ θ1qq pθ ´ θ1q

ˇ

ˇ

ˇ

p
dt

|θ ´ θ1|
p

ď sup
θ‰θ1PD,tPr0,1s

sup
u:|u|“1

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ
∇θF

γ
ξi

pθ1 ` tpθ ´ θ1qqu
ˇ

ˇ

ˇ

p

ď sup
θPD

sup
u:|u|“1

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ
∇θF

γ
ξi

pθqu
ˇ

ˇ

ˇ

p
. (9)

Equations (8) and (9) jointly conclude the proof of (3). In lieu of supθ‰θ1PD E
“

ˇ

ˇF γ
ξi

pθq´F γ
ξi

`

θ1
˘ˇ

ˇ

p

ˇ

ˇθ´θ1

ˇ

ˇ

p

‰

ă

8 from Assumption 3.1, Dominated Convergence Theorem entails Lemma 2.4.

D.2 Proof of Proposition 2.7

Proof. We denote Hℓpθq :“ Fi`ℓ´1:ipθq and Fℓ´1 :“ σpξi, . . . , ξi`ℓ´1q. Then:

Lℓ`k
p pγq “ sup

θ‰θ1PD

E r|Fi`ℓ`k´1:ipθq ´ Fi`ℓ`k´1:ipθ
1q|ps

|θ ´ θ1|p
“ sup

θ‰θ1PD
E
„

|Fi`ℓ`k´1:ipθq ´ Fi`ℓ`k´1:ipθ
1q|p

|θ ´ θ1|p
ȷ

“ sup
θ‰θ1PD

E
„

|Fi`ℓ`k´1:i`ℓpHℓpθqq ´ Fi`ℓ`k´1:i`ℓpHℓpθ
1qq|p

|Hℓpθq ´ Hℓpθ1q|p
¨
|Hℓpθq ´ Hℓpθ

1q|p

|θ ´ θ1|p
ȷ

“ sup
θ‰θ1PD

E
„

E
„

|Fi`ℓ`k´1:i`ℓpHℓpθqq ´ Fi`ℓ`k´1:i`ℓpHℓpθ
1qq|p

|Hℓpθq ´ Hℓpθ1q|p
¨
|Hℓpθq ´ Hℓpθ

1q|p

|θ ´ θ1|p
| Fℓ´1

ȷȷ

“ sup
θ‰θ1PD

E
„

E
„

|Fi`ℓ`k´1:i`ℓpHℓpθqq ´ Fi`ℓ`k´1:i`ℓpHℓpθ
1qq|p

|Hℓpθq ´ Hℓpθ1q|p
| Fℓ´1

ȷ

¨
|Hℓpθq ´ Hℓpθ

1q|p

|θ ´ θ1|p
ȷ

.
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Conditionally on Fℓ´1, Fi`ℓ`k´1:i`ℓ is driven by k new i. i.d. innovations which are independent
of Fℓ´1. Therefore we deduce that:

E
„

|Fi`ℓ`k´1:i`ℓpHℓpθqq ´ Fi`ℓ`k´1:i`ℓpHℓpθ
1qq|p

|Hℓpθq ´ Hℓpθ1q|p
| Fℓ´1

ȷ

ď Lk
ppγq.

Therefore:

Lℓ`k
p pγq ď sup

θ‰θ1PD
E
„

Lk
ppγq ¨

|Hℓpθq ´ Hℓpθ
1q|p

|θ ´ θ1|p
ȷ

“ Lk
ppγq ¨ sup

θ‰θ1PD

|Hℓpθq ´ Hℓpθ
1q|p

|θ ´ θ1|p
“ Lk

ppγq ¨ Lℓ
ppγq.

E Proofs of §3

Before we proceed to the key arguments behind the theoretical results of §3, it is instrumental to
introduce a key result that serves as the backbone of our arguments. This result originate from
[16], and serves as sharp probabilistic controls on the fluctuations of empirical sums indexed by
high-dimensional parameter sets. We restate it here in a form adapted to our setting.

Lemma E.1. Let X1, . . . , Xn P Rp be independent random vectors with p ě 2. Define M :“
max1ďiďn,1ďjďp |Xij | and σ2 :“ max1ďjďp

řn
i“1 ErX2

ijs. Then:

E

«

max
1ďjďp

∣∣∣∣∣ n
ÿ

i“1

pXij ´ ErXijsq

∣∣∣∣∣
ff

ď Kpσ
a

log p `
a

ErM2s log pq,

where K ą 0 is a universal constant.

This lemma complements the previous one by providing an expectation bound for the same
maximal deviation and quantifies the typical size of the deviation, showing that it scales as
O
`?

log p
˘

up to constants depending on variance and maximal moments. In summary, it
provides the empirical process tools that underpin our general moment bound in Theorem 3.5.
We note that the for the sake of brevity, the results are proved for ℓ “ 1; the general ℓ-cases
follow by a simple conditional argument akin to Proposition 2.7.

E.1 Proof of Theorem 3.5

The key idea of Theorem 3.5 is to discretize the set Φ with suitably selected grid, before applying
Lemma E.1 to control the deviations of functions evaluated on those grid-points. This grid is
carefully chosen to have appropriate packing radius, that allows us to move seamlessly into the
compact set Φ while maintaining the rate derived on the grid-points. We formalize this ideas
through a novel technique leveraging ε-nets.

Proof. LetN :“ nc for some c ą p{2. For a given φ P Φ, we denote tφuN :“ 1
N

`

tNφ1u, . . . , tNφdu
˘

,
with φk being the kth coordinate of φ. Then, by compactness and convexity of Φ, N :“
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ttφuN | φ P Φu is a δn-net for Φ, where δ :“ δn ď LΦn
´c for some constant LΦ ą 0 that depends

only on Φ. Enumerate its elements as tφ1, . . . , φJu and observe J ď LΦ ¨ Nd. Recall AΦ,p

defined in Theorem 3.5, and set Xij :“ |Xipφjq|p. Clearly, with σ2 :“ max1ďjďJ
řn

i“1 E
”

X2
ij

ı

,

we obtain, via (7),

σ2 ď nE

«

sup
φPΦ

|Xipφq|2p
ff

“ n ¨ AΦ,p. (10)

On the other hand, letting M2 :“ max1ďiďn,1ďjďJ |Xij |2, it follows

E
“

M2
‰

“ E

«

max
1ďiďn

sup
φPΦ

|Xipφq|2
ff

ď

n
ÿ

i“1

E

«

sup
φPΦ

|Xipφq|2
ff

“ n ¨ AΦ,p. (11)

In view of (10) and (11), Lemma E.1 entails

E

«

max
1ďjďJ

∣∣∣∣∣ n
ÿ

i“1

pXij ´ E rXijsq

∣∣∣∣∣
ff

ď K
´

σ
a

log J `
a

E rM2s log J
¯

“ K
´

a

n ¨ AΦ,p

a

logLΦ ` cd logn `
a

n ¨ AΦ,pplogLΦ ` cd lognq

¯

ď B ¨
?
n logn, (12)

where K ą 0 is a universal constant and B ą 0 depends only on AΦ,p, c and d. With this
necessary derivations taken care of, we proceed towards the main arguments. By definition,
|φ ´ tφuN | ă δ. Recall Sn,pp¨q from the statement of Theorem 3.5. Note that

E
“

sup
φPϕ

∣∣Sn,ppφq ´ E
“

Sn,ppφ
˘

s
∣∣ ‰

ď E
“

max
1ďjďJ

∣∣Sn,pptφuN q ´ E
“

Sn,pptφuN q
‰∣∣ ‰ ` E

“

sup
φPΦ

|Sn,ppφq ´ Sn,pptφuN q|
‰

` sup
ϕPΦ

∣∣E“Sn,ppφ
˘

s ´ E
“

Sn,pptφuN q
‰
∣∣

:“ T1 ` T2 ` T3. (13)

We tackle (13) one-by-one. Equation (12) instructs that T1 “ O p
?
n lognq. Next, moving on to

T2, we observe that

E

«

sup
φPΦ

|Sn,ppφq ´ Sn,pptφuN q|

ff

ď n ¨ E

«

sup
φPΦ

|Xp
i pφq ´ Xp

i ptφuN q|

ff

ď np ¨ E

«

2 sup
φPΦ

|Xipφq|p´1
¨ sup
φPΦ

|Xipφq ´ XiptφuN q|

ff

(14)

ď 2np

˜

E

«

sup
φPΦ

|Xipφq|p
ff¸

p´1
p

˜

E

«

sup
φPΦ

|Xipφq ´ XiptφuN q|p
ff¸

1
p

(15)

ď 2np
a

AΦ,p

p´1
p pKΦδq

1
p “ Opn ¨ δ´c{pq “ Opn1´c{pq, (16)

where, (14) follows due to the elementary inequality | |a|p ´ |b|p | ď p
´

|a|p´1
` |b|p´1

¯

¨ |a ´ b|,
for p ě 1, a, b P R; (15) involves an application of Hölder’s inequality, and finally, (16) invokes
(6) and (7). Note that, trivially T3 ď T2. Therefore, (13), along with δ “ Opn´cq with c ą p{2,
begets,

E

«

sup
φPΦ

|Sn,ppφq ´ E rSn,ppφqs|

ff

À ¨
?
n logn ` n1´c{p “ O

`?
n logn

˘

,

where À hides constants pertaining p, d and φ. This completes the proof.
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E.2 Proof of Theorem 3.6

The key idea behind Theorem 3.6 is to express the data-driven MEP’s as supremum of random
functions, before invoking Theorem 3.5.

Proof. For θ P D, γ P Γ and u P B, denote

Mnpθ, γ, uq :“
1

n

n
ÿ

i“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p , and, Mpθ, γ, uq :“ E

”∣∣∣∇θF
γ
ξi

pθqu
∣∣∣pı .

We start off by establishing

E

«

sup
θPD,γPΓ,uPB

|Mn pθ, γ, uq ´ M pθ, γ, uq|

ff

“ O

ˆ

log n
?
n

˙

. (17)

Observe that Φ :“ D ˆ Γ ˆ B is a compact set, and F γ
ξi

pθq are i. i.d. random functions taking
values in φ P Φ. Moreover, Assumptions 3.2 and 3.3 correspond to (6) and (7) respectively.
Therefore, a direct application of Theorem 3.5 entails (17). Finally, in lieu of Lemma 2.4, (17)
yields

E

«

sup
γPΓ

∣∣∣pLℓ,n
p pγq ´ Lℓ

ppγq

∣∣∣ff “ E

«

sup
γPΓ

∣∣∣∣∣supθPD
sup

u:|u|“1

1

n

n
ÿ

i“1

∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p ´ sup

θPD
sup

u:|u|“1
E
”

∇θF
γ
ξi

pθqu
ı

∣∣∣∣∣
ff

ď
1

n
E

«

sup
θPD,γPΓ,uPB

∣∣∣∣∣ n
ÿ

i“1

´∣∣∣∇θF
γ
ξi

pθqu
∣∣∣p ´ E

”∣∣∣∇θF
γ
ξi

pθqu
∣∣∣pı¯∣∣∣∣∣

ff

“ O

ˆ

logn
?
n

˙

,

which completes the proof.

E.3 Proof of Theorem 3.7

Proof. It is necessary to establish a bound on PpsupxPΦ |Snpxq| ě zq. Let N :“ nc for some
c ą p{2. To this end, for a given y P Φ, we denote tyuN :“ 1

N

`

tNy1u, . . . , tNydu
˘

, with yk being
the kth coordinate of y. Then, by compactness and convexity of Φ, N :“ ttyuN | y P Φu is a δn-
net for Φ, where δ :“ δn ď LΦn

´c for some constant LΦ ą 0 that depends only on Φ. Enumerate
its elements as ty1, . . . , yJu and observe J ď LΦ ¨ Nd. This allows for the decomposition:

T :“ sup
yPΦ

|Snpyq| ď sup
yPΦ

|Snpyq ´ Snptyunq| ` sup
yPΦ

|Snptyunq| :“ T1 ` T2.

A similar decomposition holds for the Gaussian process:

Z :“ sup
yPΦ

∣∣SZ
n pyq

∣∣ ď sup
yPΦ

∣∣SZ
n pyq ´ SZ

n ptyunq
∣∣ ` sup

yPΦ

∣∣SZ
n ptyunq

∣∣ :“ Z1 ` Z2.

It is also useful to observe that Z2 ď Z ` Z1.

These decompositions allow for the following, setting ε ą 0:
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sup
zPR

|PpT ě zq ´ PpZ ě zq|

ď sup
zPR

|PpT ě zq ´ PpT2 ě z ` εq| ` sup
zPR

|PpT2 ě z ` εq ´ PpZ2 ě z ` εq| ` sup
zPR

|PpZ ě zq ´ PpZ2 ě z ` εq|

ď PpT1 ě εq ` sup
zPR

|PpT2 ě zq ´ PpZ2 ě zq| ` sup
zPR

|PpZ ě zq ´ PpZ2 ě z ` εq| . (18)

For the first summand in (18), bound as follows using Markov’s inequality:

PpT1 ą εq “ Ppsup
yPΦ

|Snpyq ´ Snptyunq| ą εq ď ε´1Ersup
yPΦ

|Snpyq ´ Snptyunq|s

ď nε´1Ersup
yPΦ

|Xipyq ´ Xiptyunq|s ď nε´1
a

KΦδn À ε´1n1´c. (19)

For the second summand, it is prudent to fulfill condition (ii) for Corollary 2.1 in [14]. De-
note xij :“ Xipy

jq. Then for p P t1, 2u in particular, recall Equation (7). Set C1 :“ AΦ,1.
Nondegeneracy guarantees existence of some c1 ą 0 such that:

c1 ď
1

n

n
ÿ

i“1

Erx2ijs.

Observe via Jensen’s inequality that for all i P rns:

sup
jPrJs

Er|xij |3s ď sup
jPrJs

pEr|xij |4sq3{4,

so setting Bn :“ A
1
4
Φ,2 yields 1

n

řn
i“1 Er|xij |4s ď 2B4

n,, guaranteeing condition (E.2). Additionally,
observe:

B4
nplogpJnqq7

n
—

plogpncd`1qq7

n
“ pcd ` 1q

log7 n

n
,

so to fulfill B4
nplogpJnqq7

n ď C2n
´c2 , it is sufficient to choose c2 ą 1. Thus, there exist constants

C3, c3 ą 0 depending only on C1, c1, C2, c2 such that:

sup
jPrJs

∣∣PpSnpyjq ě zq ´ PpSZ
n pyjq ě zq

∣∣ ď C3n
´c3 . (20)

The third summand is bounded by applying Nazarov’s inequality. Denote for a random vector
V P RJ :

σpV q :“ min
jPrJs

VarpV jq.

Observe for all z P R and η ą 0: PpZ ě zq ď PpZ1 ě ηq ` PpZ2 ě z ´ ηq. It follows

sup
zPR

pPpZ ě zq ´ PpZ2 ě z ` εqq ď PpZ1 ě ηq ` sup
wPR

Ppw ď Z2 ď w ` η ` εq. (21)

For the first term in (21), we apply (6) to compute:

ErZ1s ď

b

ErZ2
1 s “ sup

yPΦ

b

VarpSZ
n pyq ´ SZ

n ptyunqq “
?
n sup

yPΦ

b

VarpZipyq ´ Zyptyunqq

ď
?
nErsup

yPΦ
|Zipyq ´ Ziptyunq|s ď

?
nErsup

yPΦ
|Xipyq ´ Xiptyunq|s ď nKΦδn — n

1
2

´c. (22)
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Equation (22) yields that PpZ1 ě ηq À η´1n
1
2

´c. For the second term in (21), apply Nazarov’s
inequality [15] to deduce:

sup
wPR

Ppw ď Z2 ď w ` η ` εq ď p
a

2 log J ` 2qpη ` εq sup
yPΦ

σ´1pSZ
n ptyunqq À pη ` εq

c

log n

n
.(23)

Plugging (22) and (23) into (21) and setting η “ ε delivers:

sup
zPR

pPpZ ě zq ´ PpZ2 ě z ` εqq À ε´1n
1
2

´c ` εn´ 1
2

a

log n.

An analogous derivation exists for PpZ2 ě z ` εq ´ PpZ ě zq, so

sup
zPR

|PpZ ě zq ´ PpZ2 ě z ` εq| À ε´1n
1
2

´c ` εn´ 1
2

a

log n. (24)

Recalling (19), (20) and (24), conclude:

sup
zPR

|PpT ě zq ´ PpZ ě zq| À ε´1n1´c ` n´c3 ` ε´1n
1
2

´c ` εn´ 1
2

a

log n. (25)

Choosing ε “ n
3
4

´ c
2 log´ 1

4 n, one concludes from (25) that

sup
zPR

|PpT ě zq ´ PpZ ě zq| À n
1
4

´ c
2 log

1
4 n ` n´c3 ,

which completes the proof.

F Proofs of §4

F.1 Proof of Theorem 4.4

Proof. We provide the proof for ℓ “ 1. By definition, pγnppq P Γ. Fix some M ą 0 such that
Lppγ0q ` M ă 1. Therefore, invoking Theorem 3.6, it follows,

P
´

pLn
p pγ0q ă 1

¯

ě P
´

|pLn
p pγ0q ´ Lppγ0q| ă M

¯

Ñ 1 as n Ñ 8. (26)

Additionally, suppose 0 ă M 1 ă 1. By the continuity of Lpp¨q, Lppγ`ppqq “ 2, hence, yet another
application of Theorem 3.6 entails that

P
´

pLn
p pγ:ppqq ą 1

¯

ě P
´

|pLn
p pγ:ppqq ´ 2| ă M 1

¯

Ñ 1 as n Ñ 8. (27)

In view of continuity of pLn
p p¨q, equations (26) and (27) combined, yield that

Pppγnppq P intpΓqq ě P
´

pLn
p pγ0q ă 1, pLn

p pγ:ppqq ą 1
¯

Ñ 1 as n Ñ 8. (28)

This completes the proof of our first assertion. We leverage (28) en route to our second assertion.
To that end, observe that following from Assumption 3.4, Lpp¨q is differentiable at γppq with its
derivative bounded by Kp. So there exists some K ď Kp, such that we can use it to write out
first order Taylor expansion of Lp¨q about γppq:

Lpγq ´ Lpγppqq “ Kpγ ´ γppqq ` opγ ´ γppqq. (29)
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From Theorem 3.6, it follows given ε ą 0 that there exist some Gε ą 0 and Nε ą 0 such that for
all n ą Nε:

P

˜

sup
γPΓ

|Lnpγq ´ Lpγq| ą Gε
log n
?
n

¸

ď ε.

If pγℓ,n P Γ, then following from the continuity of Ln, we have Lnppγℓ,nq “ 1 “ Lpγℓq. Therefore,

P

˜

sup
γPΓ

|Lnpγq ´ Lpγq| ą Gε
log n
?
n

¸

ě P
ˆ

pγℓ,n P Γ, |Lnppγℓ,nq ´ Lppγℓ,nq| ą Gε
log n
?
n

˙

ě P
ˆ

pγℓ,n P Γ, |pγℓ,n ´ γℓ| ą K1 ¨
log n
?
n

˙

, (30)

where, K1 :“ 2Gε
K , and in (30), we invoke (29). Combined with (29), (30) yields

P
ˆ

pγℓ,n P Γ, |pγℓ,n ´ γℓ| ą K1 ¨
log n
?
n

˙

ď ε. (31)

Equations (28), (31) jointly conclude the proof.
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