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Abstract
Stochastic gradient descent (SGD) is a popular algorithm for large-scale data estimation due to its
efficiency in computation and memory usage. While most research has focused on convergence
rates and asymptotic distributions in convex optimization, this work addresses the stable conver-
gence of true model parameters for SGD variants in non-convex optimization settings. Our contri-
butions are twofold. First, we derive stable convergence results for a broad class of SGD variant
iterates under a general non-convex framework. Second, we introduce a Gaussian mixture model-
based algorithm to analyze the endpoints of SGD chains, enabling the identification of distinct local
optima. These methods have broad practical applications. For instance, by leveraging local optima,
the global minimum can be identified through empirical risk, making this approach highly relevant
for tackling complex learning problems in modern data science.
Keywords: Stochastic gradient descent (SGD); non-convex optimization; stable convergence

1. Introduction

Estimating model parameters through objective function minimization is central to modern data
science. Let x⋆ ∈ Rd represent the true d-dimensional model parameters. In many models, x⋆

minimizes an objective function F : Rd → R, formally expressed as:

x⋆ = argmin
x∈Rd

F (x), F (x) := Eξ∼Π[f(x, ξ)], (1.1)

where ξ ∈ Rm is a random variable drawn from the probability distribution Π, and f : Rd ×
Rm → R is a loss function tailored to the problem at hand. Here, both f and F are assumed to be
continuously differentiable with respect to x.

Stochastic optimization methods, pioneered by Kiefer and Wolfowitz (1952) and Lai (2003), are
widely applied in scenarios with large datasets or sequential data, such as search queries and transac-
tions. Among these methods, the Robbins-Monro algorithm (Robbins and Monro, 1951; Lai, 2003),
commonly known as stochastic gradient descent (SGD), is the most widely used method, particu-
larly in machine learning and statistics. Starting with an initial point x0, SGD updates iteratively as
follows:

xn = xn−1 − ηn∇f(xn−1, ξn), n = 1, 2, . . . . (1.2)

Here, ηn is a step size that typically decreases over iterations, ξn is the n-th random sample from
distribution Π, and ∇f(xn−1, ξn) is the gradient of f(x, ξn) evaluated at xn−1. The solution can be
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either the final iterate or the average of all iterates. SGD offers significant computational and storage
benefits compared to traditional deterministic optimization methods. Each iteration requires only
one data sample, yielding a per-iteration time complexity of O(d), independent of the dataset size.
Furthermore, SGD avoids storing the entire dataset, making it naturally suited for online settings
where data arrives in sequence Zhu et al. (2023). It is now the dominant optimization approach for
machine learning tasks (Rumelhart et al., 1986; Spall, 2000; Nesterov and Vial, 2008; Nemirovski
et al., 2008; Zhou et al., 2019), such as training deep neural networks.

Building on the vanilla SGD framework in Eq. (1.2), numerous variants have been proposed
in optimization and statistical learning. Most prior studies emphasize computational convergence
for the objective function, or analyze the asymptotic behavior of the solution relative to the true
minimizer x⋆ in Eq. (1.1), focusing primarily on convex functions. However, assumptions such
as strong convexity or the Polyak-Lojasiewicz (PL) conditions are often too restrictive for practical
deep learning problems. As noted by Bruna et al. (2017): “While SGD has been rigorously ana-
lyzed only for convex loss functions (Schmidt et al., 2017), in deep learning the loss is a non-convex
function of the network parameters, hence there are no guarantees that SGD finds the global mini-
mizer.” Identifying global minima in complex non-convex optimization remains an unresolved and
challenging problem in practice.

Recently, progress has been made in analyzing local convergence properties of SGD variants
under non-convex settings, as shown in works like Fehrman et al. (2020); Lei et al. (2020); Ko and
Li (2023); An and Lu (2023). These studies often focus on metrics such as the convergence of
E[|∇F (xn)|] or almost sure local convergence of xn to a distribution over critical points. Despite
these advances, stable convergence for local optima in non-convex problems remains largely under-
explored, particularly for accelerated variants of SGD. Stable convergence (Hall and Heyde, 1980),
a central concept in statistics and probability, is critical for quantifying uncertainty in parameter
estimation, especially when the estimator converges to a random variable over a set of parameters
rather than to a specific parameter. In this paper, we establish stable convergence results for a range
of SGD variants under broad non-convex conditions, demonstrating asymptotic normality around
each local optimum. These advancements surpass the capabilities of traditional methods relying on
deviation inequalities or generalization error bounds.

In addition to vanilla SGD, this paper examines the momentum-assisted version of SGD (m-
SGD), one of the most widely used variants inspired by Polyak’s Stochastic Heavy Ball (SHB)
method (Poljak, 1964; Gadat and Panloup, 2023). The most common implementation of m-SGD
uses a constant step size for momentum, represented as follows:

vn = βvn−1 + ηn∇f(xn−1, ξn),

xn = xn−1 − vn. (1.3)

Compared to vanilla SGD, the convergence analysis of m-SGD for non-convex optimization prob-
lems remains extremely limited. For a fixed step size (ηn = η), Yu et al. (2019) derived an upper
bound for the convergence rate O((nη)−1+η(1−β)−1). However, when β approaches 1, the error
rate becomes significantly large, failing to fully account for m-SGD’s practical competitiveness. In
this paper, we address this gap by providing a stable convergence analysis for m-SGD. Our results
not only refine the error convergence rate but also highlight a crucial trade-off: the balance between
convergence error and m-SGD’s capacity to escape saddle points. To the best of our knowledge,
this trade-off has not been explicitly explored in existing literature.
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Building on these results, multiple SGD runs with moderate iterations can produce outputs that
can be effectively represented as a novel Gaussian mixture model, where each cluster mean corre-
sponds to a local minimum. This approach enables the estimation of means of the Gaussian mixture
models, which not only helps in distinguishing between different local minima, but also plays a
crucial role in identifying the global minimum. The formal procedure is outlined in Algorithm 1.

Algorithm 1 Identifying the Local Optimum Using SGD

Require: Step-size parameters η, α, β; noisy gradient ∇f(x, ξ); i.i.d. samples ξ1, . . . , ξT ; compact
set K containing all critical points of E[f ]; number of SGD chains B; number of iterations T .

Ensure: Cluster means as estimates of the local optima.
1: Initialize x0,b independently and uniformly within V , for all b ∈ [B].
2: for b = 1 to B do

for i = 1 to T do
Update xi,b using either vanilla SGD (1.2) or m-SGD variants (1.3), (3.3).

end
end

3: Apply a Gaussian mixture model estimation method to the dataset (xT,b)b∈[B] to obtain cluster
means and cluster variances.

4: Output: Cluster means serve as estimates of the local minima, defined as: J := {x :
E[∇f(x, ξ)] = 0,∇2E[f(x, ξ)] ≻ 0}, J ⊆ V . Cluster variances estimate the variance of
the endpoint iterates corresponding to each identified local optimum.

1.1. Our contribution

We summarize our main results and contributions as follows:

• First, for a fixed initialization x0, we establish stable convergence results for SGD and m-SGD
iterates under a general non-convex setting. Specifically, we show:

η−1/2
n (xn(x0)− a)|{xn(x0) → a} w→ N(0,Σ(a)), n→ ∞, (1.4)

where a represents a local minimum and Σ(a) is a covariance matrix. To the best of our
knowledge, this represents the first stable convergence analysis for accelerated variants of
SGD in non-convex optimization.

• Second, by leveraging the stable convergence results, we can identify local minima. For suf-
ficiently large iterations T and B independent initializations x0,b, b ∈ [B], we construct a
dataset of endpoints {xT (x0,b)}b∈[B]. By applying a Gaussian mixture model-based cluster-
ing algorithm, we can effectively distinguish the distinct local minima, as demonstrated in
Algorithm 1. The global optimum then may be determined as the estimated local optimum
with the smallest empirical risk.

The validity of our algorithm is immediate following (1.4). For practical validity, we provide a
numerical example of a non-convex function, where, our theoretical framework enables the identifi-
cation of local minima with significantly fewer SGD iterations, greatly reducing the computational
burden.
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1.2. Some Related Work

The theoretical analysis of SGD and its variants has been extensively studied in the literature. Here,
we focus on reviewing the most relevant works. The convergence of vanilla SGD and the asymptotic
normality for strictly convex functions have been thoroughly examined in Blum (1954); Wolfowitz
(1956); Sacks (1958); Fabian (1968); Ljung (1977, 1984), among others. For SGD with constant
step sizes (ηn = η), it is well known that such step sizes can introduce bias (Dieuleveut et al., 2017),
so we focus on step sizes ηn that decrease to zero. To quantify the variability of SGD around the
minimum, Polyak and Juditsky (1992); Ruppert (1988) introduced averaged SGD (ASGD), which
involves averaging the iterates. The asymptotic normality of ASGD iterates was formally estab-
lished in Polyak and Juditsky (1992) for convex optimization problems. Another notable asymptotic
result in the literature is the end-term central limit theorem (CLT), which exhibits an error rate of
O(

√
ηn) (Fabian, 1968; Sacks, 1958; Chung, 1954).

While there is a rich body of work on vanilla SGD, the analysis of momentum-based SGD
(m-SGD) is less extensive, though still substantial. In convex settings, various convergence prop-
erties and asymptotic normality results for m-SGD have been investigated in Gitman et al. (2019);
Loizou and Richtárik (2020); Tang et al. (2023); Li et al. (2024), among others. However, asymp-
totic normality in non-convex settings has been largely unexplored, leaving a significant gap in the
literature.

1.3. Organization of the paper

The paper is organized as follows: the first part focuses on the theoretical foundations of Algorithm
1. In particular, Section 2 explores the theoretical results for Vanilla SGD, while Section 3 delves
into two widely used variants of momentum-SGD. Finally, Section 4 concludes the paper with a
summary of key insights and implications. In the appendix, Appendix A presents numerical studies
that validate and support the theoretical findings. Detailed mathematical derivations and proofs are
provided in Appendix B and C.

1.4. Notation

We interchangeably use | · | and ∥ · ∥ to denote the Euclidean norm on Rd; for a ∈ Rd, |a| =

∥a∥ =
√∑d

j=1 a
2
j . The notation ∥ · ∥Lq refers the Lq norm of a random variable, defined as

∥X∥Lq := E[∥X∥q]1/q. For a positive definite matrix A, λmin(A) and λmax(A) denote, respec-
tively, the smallest and the largest eigenvalues of A. The symbols ∇ and ∇2 represent the gradient
vector and Hessian matrix of a function f : Rd → R, respectively. For positive sequences {an}n∈N
and {bn}n∈N , an ≲ bn means there exists some constant C such that an ≤ Cbn for all sufficiently
large n. The constant C is a generic placeholder that may vary from line to line. Finally, w→ denotes
convergence in distribution.

2. Convergence of vanilla SGD

In this section, we lay the theoretical foundation for the stable convergence results of the vanilla
SGD algorithm (1.2). To effectively address the non-convexity of the problem, we introduce a set
of general assumptions. Let J = {x ∈ Rd : |∇F (x)| = 0} represent the set of critical points, and
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J0 ⊂ J denote the set of local minima. To proceed, we impose the following standard regularity
conditions on F and f , which are essential for establishing our results.

Assumption 2.1 The set J0 is non-empty and finite. Moreover, the random sample ξi ∈ Lp for
some p ≥ 2.

The assumption that J0 is non-empty is standard in the non-convex optimization literature, and
appears in works such as Gitman et al. (2019); Jin et al. (2022) in the context of almost sure con-
vergence of m-SGD and Adagrad. Additionally, we assume that J0 is finite. While this may seem
restrictive, many well-known non-convex problems, such as matrix sensing, phase retrieval, matrix
completion, and regression with non-convex constraints, satisfy this condition; see Ge et al. (2015,
2016); Chi et al. (2019); Tong et al. (2021); Cai et al. (2022); Tan and Vershynin (2023). For neural
networks, although saddle-point regions of positive measure may exist, it has been demonstrated
that algorithms like SGD and m-SGD can escape these regions with arbitrarily high probability
Wang et al. (2021); Kleinberg et al. (2018). Therefore, Assumption 2.1 can be reasonably justified
for most practical applications.

Furthermore, the optimization landscape of many non-convex statistical problems is often be-
nign, allowing us to introduce additional assumptions regarding the behavior of F near the local
minima. Specifically, we make the following two assumptions.

Assumption 2.2 (Local µ-strong convexity) For each x ∈ J0, there exists γ(x) > 0 and µ(x) >
0 such that

∇F (y)⊤(y − x) ≥ µ(x) |y − x|2, for all y ∈ Rd with |x− y| < γ(x). (2.1)

This assumption ensures that ∇2F (y) ≻ 0 for all y ∈ J0, meaning all local minimas are Hurwicz-
regular. Note that, due to Assumption 2.1, we can assume γ(x) ≡ γ and µ(x) ≡ µ for all x ∈ J0.

Assumption 2.3 (Lipschitz condition) The function F is assumed to be L-smooth, i.e.,

|∇F (x)−∇F (y)| ≤ L|x− y|, for all x, y ∈ Rd. (2.2)

In the context of statistical inference, similar assumptions are widespread in most theoretical anal-
yses of convex SGD. For non-convex optimization problems, Assumption 2.2 guarantees conver-
gence to a local minimum once the iterates enter a neighborhood (ball) around that specific local
minimum. Such localized assumptions are commonly employed in non-convex analysis, such as Yu
et al. (2021); Zhong et al. (2023).

Additionally, to ensure that the estimation error of SGD exhibits a quantifiable asymptotic
behavior, it is crucial to control the randomized gradient ∇f(xn−1, ξn). To address this, we in-
troduce a Leibniz assumption, allowing us to interchange integration and differentiation in the
analysis. Furthermore, we impose a mild smoothness condition on the gradient noise, defined as
g(x, ξ) = ∇F (x)−∇f(x, ξ).

Assumption 2.4 (Regularity of gradient noise) The function f(x, ξ) is assumed to be continu-
ously differentiable with respect to x for any fixed ξ, and E[|∇f(x, ξ)|2] is also continuously dif-
ferentiable. Additionally, it is assumed that E[g(xn−1, ξn)|Fn−1

1 ] = 0 for any Fn−1
1 -measurable

random variable xn−1, where F j
k = σ(ξk, . . . , ξj)(j > k) represents the σ-field generated by all

past samples ξi up to step k.
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Furthermore, the gradient noise g(x, ξ) must satisfy ∥g(x, ξ)∥L2 <∞ for all x ∈ J . Moreover,
there exists constants L′ > 0, and γ′ > 0, such that for some p > 2,

∥g(y, ξ)− g(x, ξ)∥Lp ≤ L′|x− y|, for all y ∈ Rd with |x− y| < γ′ . (2.3)

An attentive reader may note that L′ and γ′ can be chosen to be the same as L and γ in Assumptions
2.3 and 2.2, respectively. Assumption 2.4 is widely used in the literature and can be found in works
such as Wei et al. (2023); Zhu et al. (2023). Building on these assumptions, the following theorem
provides a conditional Gaussian approximation for the iterates of vanilla SGD.

Theorem 1 Suppose that the functions f and F satisfy Assumptions 2.1-2.4. Let V ⊆ Rd be a
closed set containing J0, and consider an initial point x0 ∈ V . For the SGD iterates defined in (1.2)
with step sizes ηi = ηi−α, where η > 0, and α ∈ (1/2, 1), there exists a random variable X(x0)
supported on J0, and a function Σ : Rd → Rd×d such that

Σ(a)−1/2η−1/2
n (xn − a)|{X = a} w→ N(0, Id), as n→ ∞, if a ∈ J0. (2.4)

Remark 2 For SGD applied to non-convex objectives with step-sizes ηt ≈ t−1, Sirignano and
Spiliopoulos (2020) established a central limit theorem under the assumption of a single global
minimum. Similar results appear in Hu et al. (2024) in the context of Markov chains. More recently,
Zhong et al. (2023) proved stable convergence results for averaged vanilla SGD iterates. Apart
from the weaker assumptions for Theorem 1, another key distinction between these works lies in the
asymptotic covariance matrix. For Polyak-Ruppert averaged SGD, the asymptotic covariance ma-
trix, in our notation, is given byA−1SA−1. In contrast, for the end-term CLT, the covariance matrix
Σ uniquely determined as the solution to AΣ+ΣA = S. Additionally, Zhong et al. (2023) requires
multiple local Lyapunov and Lindeberg conditions on the noise gradients ∇f(x, ξ) to achieve the
central limit theorem. In comparison, we impose only a much weaker local smoothness assumption
as described in (2.3).

2.1. Proof of Theorem 1

The classical technique in proving central limit theory for SGD iterates involve some form of “lin-
earization” of the noisy gradient; see Polyak and Juditsky (1992); Li et al. (2024). The main idea
behind such argument notes that the noisy gradient can be written as

∇f(x, ξ) = ∇F (x)− g(x, ξ)

for x ∈ R. Note that, for an SGD sequence {xn}n≥1 and i.i.d. random variables {ξn}n≥1,
{g(xn−1, ξn)} is a martingale difference sequence by virtue of Assumption 2.4. Therefore, {g(xn−1, ξn)}
can be controlled by classical arguments, such as martingale CLT (Hall and Heyde, 1980). On the
other hand, for strongly convex F , if x0 is the global minima, one uses ∇F (x) ≈ ∇2F (x0)

⊤(x −
x0) to carry out the linearization. However, in this case, owing to non-convexity of the function F ,
such arguments are not very straightforward. In fact, there are two major technical roadblocks.

• The presence of multiple local minima nullifies the uniqueness of the above Taylor expansion.

• The convexity holds only when xi reaches the ball inside which local strong convexity (As-
sumption 2.2) holds. This suggests a conditional argument. Is the Gaussianity of {xn} still
preserved conditional on the event that {xn → a} for some a ∈ J0?
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The first question is answered by a novel projection argument. In fact, we carry out the linearization
through the following intermediary oracle SGD iterates. For some a ∈ J0, define

yn(x0) = ΠB(a,γ)(yn−1(x0)− ηn∇f(yn−1(x0), ξn)), y0(x0) = x0 ∈ V, (2.5)

y(1)n (x0) = ΠB(a,γ)(y
(1)
n−1(x0)− ηn∇F (y(1)n−1(x0)) + ηng(a, ξn)), (2.6)

y(2)n (x0) = ΠB(a,γ)(y
(2)
n−1(x0)− ηnAy

(2)
n−1(x0) + ηng(a, ξn)), and, (2.7)

y(3)n (x0) = y
(3)
n−1(x0)− ηnAy

(3)
n−1(x0) + ηng(a, ξn), (2.8)

where A = ∇2F (a), and B(a, γ) = {z : |z − a| ≤ γ} is the ball centered on a, and for a compact
set A ⊆ Rd, ΠA : x 7→ argminy{|x− y| : y ∈ A} denotes the projection onto A. This localization
of the iterates enable us to carry out the Taylor series factorization successfully, thereby deducing
a Gaussian limit. This argument is driven by a successive estimation of error from yn to y(3)n . The
complete result is formally encapsulated as follows, with the proof delegated to Appendix B.

Proposition 3 Suppose the functions f and F satisfy Assumptions 2.1-2.4. Fix a ∈ J . Let V be
any compact subset of Rd. For some a ∈ J , consider the SGD iterates (2.5). Then for a Borel
Measurable set A ⊆ Rd, and with ψn(x0) := Σ(a)−1/2η

−1/2
n (yn(x0)− a), it holds that

sup
x0∈V

|P(ψn(x0) ∈ A)− Φ(A)| → 0, as n→ ∞, (2.9)

where Φ(·) denotes the measure induced by Z d
= N(0, Id), and Σ(a) is same as in Theorem 1.

The solution to the second point we raised involves a careful conditional argument leveraging three
related mathematical tools:

• The almost sure convergence of {xn} to one of the critical points, as dictated by Jin et al.
(2022).

• Controlling the probability of SGD iterates escaping the ball inside which local strong con-
vexity kicks in; this uses a result of Mertikopoulos et al. (2020). This result allows us to, in a
sense, “forget” the conditioning event and directly apply Proposition 3.

• Bear upon Proposition 3 on the two preceding points to deduce Gaussianity.

The complete proof is formally stated below. Let ε ∈ (0, 1) be given. For each a ∈ J0, Assumption
2.2 dictates that Lemma 1 of Mertikopoulos et al. (2020) holds with a ball B(a, τ) ⊆ B(a, γ).
Choose δ > 0 such that 4δ+2

√
δ < τ . This choice of δ is governed by equations (D.16) and (D.17)

of Mertikopoulos et al. (2020). Indeed, from Theorem 4 of Mertikopoulos et al. (2020), there exists
Mε,0 ∈ N sufficiently large such that for all m ≥Mε,0,

P(max
i≥m

|xi − a| ≤ 4δ + 2
√
δ | |xm − a| ≤ 2δ) ≥ 1− ε. (2.10)

Subsequently we will fix a ∈ J0. Fix m ≥ Mε, whose particular choice will be mentioned later.
For some b ∈ R, define the projected oracle sequence

yn(b) = ΠB(a,γ)(yn−1(b)− ηn∇f(yn−1(b), ξn)), n ≥ m, ym(b) = b.
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It follows easily from (2.10) that,

P(η−1/2
n |xn − yn(xm)| > 0 | |xm − a| ≤ 2δ)

≤ ε+ P(η−1/2
n |xn − yn(xm)| > 0 |max

i≥m
|xi − a| ≤ 4δ + 2

√
δ, |xm − a| ≤ 2δ), (2.11)

and the probability in the final expression in (2.11) is exactly zero, since given maxi≥m |xi − a| ∈
B(0, γ), xn = yn(xm) holds for all n ≥ m. Hence, one has

sup
m,n:Mε,0≤m≤n

P(η−1/2
n |xn − yn(xm)| > 0 | |xm − a| ≤ 2δ) < ε. (2.12)

Let gn be such a function that gn(b,Fn
m+1) := Σ(a)−1/2η

−1/2
n (yn(b) − a). Proposition 3 reveals

that all convergence statements therein hold uniformly over the set |b − a| ≤ 2δ; i.e., given a
Borel-measurable set E ⊆ Rd, there exists Nε,m ≥ m such that for all n ≥ Nε,m it holds

|P(gn(xm,Fn
m+1) ∈ E | |xm − a| ≤ 2δ)− Φ(E)| ≤ sup

|b−a|≤2δ
|P(gn(b,Fn

m+1) ∈ E)− Φ(E)| < ε,

(2.13)

where Φ(·) denotes the measure induced by Z d
= N(0, Id) on Rd. From (2.12) and (2.13) one

obtains that for all n ≥ Nε,m with m ≥Mε,0,

|P(Σ(a)−1/2η−1/2
n (xn − a) ∈ E | |xm − a| ≤ 2δ)− Φ(E)| < 2ε. (2.14)

Theorem 1 of Jin et al. (2022) instructs that there exists a discrete random variable X , taking values
on J , such that xn

a.s.→ X . We assume P(X = a) > 0, otherwise the assertion in Theorem 1 is
trivial. For each z ∈ J , choose Mε,z such that P(|xMε,z − z| ≤ 2δ | X = z) ≥ 1 − ε. Choose
Mε = max{Mε,0,maxz∈J Mε,z}, and Nε = Nε,Mε . Assumption 2.1 guarantees the existence of a
finite Mε. Clearly, for all n ≥ Nε with ψX(n, a) := {Σ(a)−1/2η

−1/2
n (xn − a) ∈ E}, the following

series of inequalities hold.

|P(ψX(n, a) |X = a)− Φ(E)|
≤2ε+ |P(ψX(n, a) |X = a)− P(ψX(n, a) | |xMε − a| ≤ 2δ)|
≤4ε+ |P(ψX(n, a) | |xMε − a| ≤ 2δ,X = a)− P(ψX(n, a) | |xMε − a| ≤ 2δ)| (2.15)

where the first inequality follows from (2.14) and the second inequality is due to our choice of Mε.
Now, to tackle the second term in (2.15), write

P(ψX(n, a) | |xMε−a| ≤ 2δ) =
∑
b∈J

P(ψX(n, a) | |xMε−a| ≤ 2δ,X = b)P(X = b | |xMε−a| ≤ 2δ).

Therefore,

P(ψX(n, a) | |xMε − a| ≤ 2δ) ≤ P(ψX(n, a) | |xMε − a| ≤ 2δ,X = a)

+
∑

b∈J,b ̸=a

P(X = b| |xMε − a| ≤ 2δ). (2.16)
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Since B(a, γ) and B(b, γ) are disjoint for a ̸= b, by virtue of our choice of Mε it must be true that
P(|xMε − a| ≤ 2δ | X = b) ≤ P(|xMε − b| > 2δ | X = b) < ε for each b ̸= a. This implies that
P(X = b| |xMε − a| ≤ 2δ) ≤ ε

1−ε
P(X=b)
P(X=a) for b ̸= a. Hence, from (2.16), we deduce

P(ψX(n, a) | |xMε−a| ≤ 2δ) ≤ P(ψX(n, a) | |xMε−a| ≤ 2δ,X = a)+
ε

1− ε

P(X ̸= a)

P(X = a)
. (2.17)

On the other hand, equation (2.10) along with our choice ofMε ≥Mε,0 imply that P(X = a| |xMε−
a| ≤ 2δ) ≥ 1− ε. Therefore,

P(ψX(n, a) | |xMε − a| ≤ 2δ) ≥P(ψX(n, a) | |xMε − a| ≤ 2δ,X = a)P(X = a | |xMε − a| ≤ 2δ)

≥P(ψX(n, a) | |xMε − a| ≤ 2δ,X = a)− ε. (2.18)

In view of (2.15), (2.17) and (2.18) jointly imply that

|P(ψX(n, a) |X = a)− Φ(E)| ≤ 4ϵ+max{ε, ε

1− ε

P(X ̸= a)

P(X = a)
} (2.19)

for all n ≥ Nε. Finally, (2.19) shows that Σ(a)−1/2η
−1/2
n (xn − a)|{X = a} w→ Z = N(0, Id),

which completes the proof of Theorem 1.

3. Analysis of SGD with momentum

In this section, we extend our stable convergence results to two different forms of momentum-SGD
(m-SGD). The motivation for analyzing m-SGD variants arises from the observation that vanilla
SGD is rarely employed in practical applications. Instead, momentum-based variants are commonly
used due to their ability to escape saddle points more effectively and achieve significantly faster
convergence rates.

We start by examining the constant-momentum version of SGD, as described in (1.3). This
variant incorporates a momentum term that helps smooth out the updates, enhancing its robustness
in non-convex landscapes. When the momentum parameter β is not excessively large, we establish
a stable convergence result analogous to Theorem 1 for this momentum-enhanced variant.

Theorem 4 Suppose the functions f and F satisfy Assumptions 2.1-2.4. Let V ⊆ Rd be a closed
set containing J0, and consider an initial point t0 = (v0, x0) ∈ V × V . For the m-SGD iterates
defined in (1.3), assume step sizes ηi = ηi−α with η > 0, α ∈ (1/2, 1), and let the momentum
parameter β satisfy the condition

0 ≤ β <
µ2

2L2 + µ2
∧min

y∈J

{
1 +

1

2κ(∇2F (y))
−

√
1 +

1

4κ2(∇2F (y))

}
, (3.1)

where κ(A) = λmax(A)/λmin(A) is the condition number of the matrix A. Then, there exists a
random variable X(x0) supported on J0, such that√

1− βΣ(a)−1/2η−1/2
n (xn − a)|{X = a} w→ N(0, Id), as n→ ∞, if a ∈ J0. (3.2)

where Σ : Rd → Rd×d is same as that in Theorem 1.
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This result extends the stable convergence framework to m-SGD, demonstrating that, under
appropriate conditions, the method retains theoretical guarantees while incorporating momentum.
The proof of this result is included in Appendix C.

Remark 5 The technical restriction on β warrants further discussion. The term µ2

2L2+µ2 reflects an
interplay between the local convexity µ and smoothness L of the function F . Specifically, achieving
a large β requires a large µ and a comparatively small L. This implies that the corresponding local
minimum must be a strong attractor, and the function must exhibit low volatility in its vicinity—
both of which are reasonable assumptions in many practical scenarios. On the other hand, the
condition involving κ(∇2F (y)), the condition number of the Hessian at a local minimum y, ensures
the regularity of the local minima, further supporting the stability and convergence of the iterates.

Remark 6 More importantly, it is worth noting that as β increases, the asymptotic variance grows
proportionally to (1 − β)−1. In other words, the asymptotic variance of m-SGD is higher than
that of vanilla SGD when β > 0. At first glance, this may seem counterintuitive, especially given
the numerous practical examples where m-SGD demonstrates faster convergence. However, this
discrepancy highlights an important trade-off, as mentioned earlier in the introduction. As pointed
out in Darken and Moody (1991); Wiegerinck et al. (1994); Sutskever et al. (2013), the primary
impact of momentum occurs during the initial “transient” phase of the SGD process. This is also
reflected in the ability of m-SGD to escape saddle points with higher probability than vanilla SGD
(Xu et al., 2018; Wang et al., 2021). A larger β allows m-SGD to take, on average, larger step sizes
compared to vanilla SGD, which explains its improved efficiency in practice for large β. On the
other hand, stable convergence characterizes the “local” behavior of the algorithm, focusing on
the variability of the iterates once they enter the vicinity of a local minimum. Given that m-SGD
typically takes larger step sizes on average compared to vanilla SGD, it naturally exhibits increased
variability within the “ball of convergence”. This is captured by the additional factor of

√
1− β

on the left-hand side of (2.4), highlighting the trade-off between fast initial convergence and higher
asymptotic variance.

While constant-momentum m-SGD is arguably the most widely used variant, a significant body
of theoretical work also explores m-SGD with divergent momentum, as seen in Gitman et al. (2019);
Li et al. (2024). In particular, we consider the following version of m-SGD,

vn = (1− rηn)vn−1 + rηn∇f(xn−1, ξn),

xn = xn−1 − ηnvn, (3.3)

where vn represents the momentum term, ηn is the step size, and r is a scaling parameter. For the
analysis of this algorithm, we impose an additional condition:

Assumption 3.1 The function F belongs to C2
(
Rd,R

)
and satisfies the following

lim
|x|−→+∞

F (x) = +∞, sup
x∈Rd

|∇2F (x)| < +∞, and ∥∇F∥2 ⩽ cff,

where cf is a constant.

This assumption is critical for proving the almost sure convergence of the algorithm (3.3), as
demonstrated in Gadat et al. (2018). However, Lemma 13 of Jin et al. (2022) suggests that this

10
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assumption could be relaxed to Assumption 2.3. The following result can be established using
techniques similar to those in Theorems 1 and 4 (see also Theorem 3.5 in Barakat et al. (2021) and
Theorem 4.1 in Li et al. (2024)).

Theorem 7 Suppose the functions f and F satisfy Assumptions 2.1-2.4 and 3.1. Let V ⊆ Rd be a
closed set containing J0, and consider an initial point x0 ∈ V . For the m-SGD iterates defined in
(3.3) with step sizes ηi = ηi−α, where η > 0, α ∈ (1/2, 1), and some r > 0, there exists a random
variable X(x0) supported on the set J0, and a function Γ : Rd → Rd×d such that

Γ(a)−1/2η−1/2
n (xn − a)|{X = a} w→ N(0, Id), as n→ ∞, if a ∈ J0. (3.4)

This result highlights the stability and convergence properties of m-SGD with divergent momen-
tum, extending the theoretical foundation of momentum-based optimization methods under these
conditions.

3.1. Key results for Theorem 4

To provide intuition for the proof of Theorem 4, it is important to revisit the key steps of the proof
of Theorem 1. In particular, the three key points listed immediately after Proposition 3 serve as the
road-map for this particular proof. The almost sure convergence result of Jin et al. (2022) carries
over to the m-SGD algorithm. Thus, after we have established the m-SGD counterparts of (a)
Theorem 4 of Mertikopoulos et al. (2020), and (b) Proposition 3, our proof can be followed in an
exactly similar manner as (2.10)-(2.19). The following two results correspond to this approach.

Proposition 8 (m-SGD version of Theorem 4.1 of Mertikopoulos et al. (2020)) Fix some toler-
ance level δ > 0, let a ∈ J , and suppose that Assumptions 2.2-2.4 hold. Assume further that
m-SGD is run with a step-size schedule of the form ηn = η(n +m)−α for some α ∈ (1/2, 1] and
large enough m, η > 0. Then, there exist neighborhoods U and U1 of a, U1 ⊆ U ⊆ B(a, γ), such
that, if θ0 ∈ U1, the event ΩU = {θn ∈ U for all n = 1, 2, . . .} occurs with probability at least 1−δ.

The proof of Proposition 8 is primarily achieved by controlling the escape probability of m-SGD
or SGD sequences, is controlling the probability that the iterate can move outside the ball at the n-th
iteration, when it has stayed inside the ball at the previous n− 1 iterations. The construction of the
balls U and U1 also needs care in order to ensure the escape probability can be arbitrarily bounded.
The detailed proofs can be found in Appendix C.1.1. In order to conclude the asymptotic normality,
we invoke the following result.

Proposition 9 Assume the conditions 2.1-2.4 for the functions F and f . For a ∈ J0 and t0 =
(v0, x0) ∈ V × V , consider the projected momentum SGD (m-SGD) iterates given as below

vn(t0) = ΠB(0,γ)(βvn−1(t0) + ηn∇f(θn−1(t0), ξn)), v0(t0) = v0,

θn(t0) = ΠB(a,γ)(θn−1(t0)− βvn−1(t0)− ηn∇f(θn−1(t0), ξn)), θ0(t0) = x0, (3.5)

where the momentum coefficient β satisfies (3.1); ηn = ηn−α , α ∈ (1/2, 1), is the learning rate.
Then, there exists a function Σ(·) : Rd → Rd×d, such that

Σ(a)−1/2η−1/2
n (θn(t0)− a)

w→ Z
d
= N(0, Id), as n→ ∞. (3.6)

Furthermore, this convergence is uniform over starting point t0 in the sense of (2.9).
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The proof of this result echoes the corresponding version for vanilla SGD, Proposition 3, notwith-
standing the crucial technical differences necessitated by the presence of the momentum coefficient.
However, the key insight can be summarized by the following correspondence between m-SGD and
SGD. For iterations (1.3), let yn = xn − β

1−β vn. Then, assuming we are inside B(a,γ) for some
a ∈ J0 such that Assumptions 2.2-2.4 can be enforced, one may obtain:

yn = xn−1 −
1

1− β
(βvn−1 + ηn∇f(xn−1, ξn)) = yn−1 −

ηn
1− β

∇f(xn−1, ξn)

≈ yn−1 −
ηn

1− β
Axn−1 + Cηng(a, ξn)

≈ (I − ηn
1− β

A)yn−1 + Cηng(a, ξn)− c
ηnβ

1− β
vn−1,

which looks quite similar to (2.8), with an additional term containing vn−1. The Gaussianity for
the linearized SGD iterates follows in Lemma 15 from verifying the Lindeberg conditions; sim-
ilar arguments should hold here for the m-SGD case, provided the momentum term vn becomes
asymptotically negligible. We undertake a step here in that direction.

Lemma 10 Under the assumptions of Proposition 9,

sup
t0∈V×V

E[|vn(t0)|2] = O(n−2α).

Proof We provide an argument for a fixed t0, which automatically carries over to the supt0∈V×V

in light of V being closed. As before, let g(x, ξ) = ∇F (x) − ∇f(x, ξ) denote the gradient noise.
Choose C0 > β2(1− β2)−1. Invoking Assumptions 2.3 and 2.4,

E[|vn|2] ≤ E[|βvn−1 + ηn∇F (θn−1)|2] + η2nE[|g(0, ξn)|2 + L|θn−1|2]
≤ (1 + C−1

0 )β2E[|vn−1|2] + Cη2n

≤ C1E[|vn−1|2] + Cη2n, (3.7)

for some C1 ∈ [0, 1), where the second inequality employs (x+ y)2 ≤ (1+ c−1)x2 +(1+ c)y2, as
well as |∇F (θn)|2 ≲ |θn|2 ≤ γ; (3.7) follows in light of |θn| ≤ γ, |vn| ≤ γ and Assumption 2.3.
Clearly, (3.7) immediately shows that

E[|vn|2] ≤ Cn
1 |v0|2 + C

n∑
i=1

i−2αCn−i
1 = O(n−2α), (3.8)

where the final inequality follows in light of
∫ a
1 τ

−xx−2αdx ≲ Cτ,αβ
−aa−2α for a > 1, τ ∈ [0, 1).

We point to the reader that (3.8) is a stronger result than Lemma 7 of Jin et al. (2022), albeit with a
stronger assumption of local convexity.

The complete proof of Proposition 9 can be found in Appendix C.1.2.

4. Conclusion

This work introduces a unified framework for analyzing the stable convergence of endpoint iterates
for vanilla SGD and m-SGD variants in non-convex optimization. Our asymptotic findings support
the use of Gaussian mixture models to estimate local minima and subsequently determine the global
minimum. To the best of our knowledge, this is the first effort to achieve global minima in complex
non-convex optimization, opening new possibilities for advancements in large-scale data science.
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Nicolas Loizou and Peter Richtárik. Momentum and stochastic momentum for stochastic gradient,
Newton, proximal point and subspace descent methods. Comput. Optim. Appl., 77(3):653–710,
2020. ISSN 0926-6003,1573-2894. doi: 10.1007/s10589-020-00220-z. URL https://doi.
org/10.1007/s10589-020-00220-z.

Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis, and Volkan Cevher. On the almost sure con-
vergence of stochastic gradient descent in non-convex problems. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM J. Optim., 19(4):1574–1609, 2008. ISSN 1052-6234,1095-7189.
doi: 10.1137/070704277. URL https://doi.org/10.1137/070704277.

Yu. Nesterov and J.-Ph. Vial. Confidence level solutions for stochastic programming. Automatica
J. IFAC, 44(6):1559–1568, 2008. ISSN 0005-1098,1873-2836. doi: 10.1016/j.automatica.2008.
01.017. URL https://doi.org/10.1016/j.automatica.2008.01.017.

B. T. Poljak. Some methods of speeding up the convergence of iterative methods. Ž. Vyčisl. Mat i
Mat. Fiz., 4:791–803, 1964. ISSN 0044-4669.

15

https://proceedings.mlr.press/v80/kleinberg18a.html
https://proceedings.mlr.press/v80/kleinberg18a.html
https://doi.org/10.1214/aos/1051027873
https://doi.org/10.1109/tnnls.2019.2952219
https://doi.org/10.1109/tnnls.2019.2952219
https://doi.org/10.1109/tac.1977.1101561
https://doi.org/10.1109/tac.1977.1101561
https://doi.org/10.1109/TIT.1984.1056895
https://doi.org/10.1007/s10589-020-00220-z
https://doi.org/10.1007/s10589-020-00220-z
https://doi.org/10.1137/070704277
https://doi.org/10.1016/j.automatica.2008.01.017


BONNERJEE HAN WU

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM J.
Control Optim., 30(4):838–855, 1992. ISSN 0363-0129. doi: 10.1137/0330046. URL https:
//doi.org/10.1137/0330046.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math. Statistics,
22:400–407, 1951. ISSN 0003-4851. doi: 10.1214/aoms/1177729586. URL https://doi.
org/10.1214/aoms/1177729586.

Peter J Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Jerome Sacks. Asymptotic distribution of stochastic approximation procedures. Ann. Math. Statist.,
29:373–405, 1958. ISSN 0003-4851. doi: 10.1214/aoms/1177706619. URL https://doi.
org/10.1214/aoms/1177706619.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83–112, 2017.

Justin Sirignano and Konstantinos Spiliopoulos. Stochastic gradient descent in continuous time: A
central limit theorem. Stochastic Systems, 10(2):124–151, 2020.

James C. Spall. Adaptive stochastic approximation by the simultaneous perturbation method. IEEE
Trans. Automat. Control, 45(10):1839–1853, 2000. ISSN 0018-9286,1558-2523. doi: 10.1109/
TAC.2000.880982. URL https://doi.org/10.1109/TAC.2000.880982.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28, ICML’13, page III–1139–III–1147.
JMLR.org, 2013.

Yan Shuo Tan and Roman Vershynin. Online stochastic gradient descent with arbitrary initialization
solves non-smooth, non-convex phase retrieval. J. Mach. Learn. Res., 24:Paper No. [58], 47,
2023. ISSN 1532-4435,1533-7928.

Kejie Tang, Weidong Liu, Yichen Zhang, and Xi Chen. Acceleration of stochastic gradient descent
with momentum by averaging: Finite-sample rates and asymptotic normality. arXiv preprint
arXiv:2305.17665, 2023. URL https://arxiv.org/abs/2305.17665.

Tian Tong, Cong Ma, and Yuejie Chi. Accelerating ill-conditioned low-rank matrix estimation
via scaled gradient descent. J. Mach. Learn. Res., 22:Paper No. 150, 63, 2021. ISSN 1532-
4435,1533-7928.

Jun-Kun Wang, Chi-Heng Lin, and Jacob Abernethy. Escaping saddle points faster with stochastic
momentum. arXiv preprint arXiv:2106.02985, 2021.

16

https://doi.org/10.1137/0330046
https://doi.org/10.1137/0330046
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177706619
https://doi.org/10.1214/aoms/1177706619
https://doi.org/10.1109/TAC.2000.880982
https://arxiv.org/abs/2305.17665


STABLE CONVERGENCE OF SGD

Ziyang Wei, Wanrong Zhu, and Wei Biao Wu. Weighted averaged stochastic gradient descent:
Asymptotic normality and optimality. Arxiv Preprint., 2023. URL https://arxiv.org/
abs/2307.06915.

Wim Wiegerinck, Andrzej Komoda, and Tom Heskes. Stochastic dynamics of learning with mo-
mentum in neural networks. J. Phys. A, 27(13):4425–4437, 1994. ISSN 0305-4470,1751-8121.
URL http://stacks.iop.org/0305-4470/27/4425.

J. Wolfowitz. On stochastic approximation methods. Ann. Math. Statist., 27:1151–1156, 1956.
ISSN 0003-4851. doi: 10.1214/aoms/1177728082. URL https://doi.org/10.1214/
aoms/1177728082.

Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle
points in almost linear time. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 5535–5545, Red Hook, NY, USA, 2018. Curran
Associates Inc.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum SGD for distributed non-convex optimization. In Proceedings of the 36th Inter-
national Conference on Machine Learning (ICML), pages 7184–7193, 2019. URL https:
//arxiv.org/abs/1905.03817.

Lu Yu, Krishnakumar Balasubramanian, Stanislav Volgushev, and Murat A. Erdogdu. An
analysis of constant step size SGD in the non-convex regime: Asymptotic normality and
bias. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), pages
4234–4248, 2021. URL https://proceedings.neurips.cc/paper/2021/file/
21ce689121e39821d07d04faab328370-Paper.pdf.

Yanjie Zhong, Todd Kuffner, and Soumendra Lahiri. Online bootstrap inference with noncon-
vex stochastic gradient descent estimator. 2023. URL https://arxiv.org/abs/2306.
02205.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global
minimum in deep learning via star-convex path. In International Conference on Learning Repre-
sentations, 2019. URL https://openreview.net/forum?id=BylIciRcYQ.

Wanrong Zhu, Xi Chen, and Wei Biao Wu. Online covariance matrix estimation in stochastic
gradient descent. J. Amer. Statist. Assoc., 118(541):393–404, 2023. ISSN 0162-1459,1537-274X.
doi: 10.1080/01621459.2021.1933498. URL https://doi.org/10.1080/01621459.
2021.1933498.

17

https://arxiv.org/abs/2307.06915
https://arxiv.org/abs/2307.06915
http://stacks.iop.org/0305-4470/27/4425
https://doi.org/10.1214/aoms/1177728082
https://doi.org/10.1214/aoms/1177728082
https://arxiv.org/abs/1905.03817
https://arxiv.org/abs/1905.03817
https://proceedings.neurips.cc/paper/2021/file/21ce689121e39821d07d04faab328370-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/21ce689121e39821d07d04faab328370-Paper.pdf
https://arxiv.org/abs/2306.02205
https://arxiv.org/abs/2306.02205
https://openreview.net/forum?id=BylIciRcYQ
https://doi.org/10.1080/01621459.2021.1933498
https://doi.org/10.1080/01621459.2021.1933498


STABLE CONVERGENCE OF SGD

Appendix A. Numerical example: Himmelblau’s function

In this section, we present a numerical experiment to validate the theoretical analysis of the central
limit theorem for SGD-type methods applied to non-convex optimization problems. More impor-
tantly, we demonstrate the use of a Gaussian mixture model applied to the endpoint iterations to
identify the global minimum. To that end, consider a randomized version of the Himmelblau’s
function Himmelblau et al. (2018), a widely-used test function in mathematical optimization:

f(x, y, ξ) = ((x2 + y − 11)2 + (x+ y2 − 7)2) + ξ(x2 + y2), ξ ∼ N(0, 1). (A.1)

It is well-known that F (x, y) = E[f(x, y, ξ)] has four local minima and one local maximum. Using
a vanilla SGD algorithm with ηt = 0.01t−0.65, and initializing x0 randomly from Unif[−4, 4] ×
[−4, 4], the algorithm requires approximately 2000 iterations to converge to one of the local min-
ima (Fig. 1, left). To identify all the local minima, we run 5000 independently initialized SGD
chains in parallel. Following Theorems 1-4, we can apply a Gaussian mixture model algorithm to
effectively identify the distinct local minima. As shown in Fig. 1, right, an EM algorithm com-
bined with Silhouette analysis Rousseeuw (1987) successfully identifies the distinct local minima
after running each SGD chain for just 50 iterations. Although many chains have not yet reached the
local minima, the Gaussian properties of the stable convergence allow the EM algorithm to accu-
rately discern the local minima, overcoming errors from premature chain termination. We further

(a) (b)

Figure 1: (left) SGD iterates after 2000 iterations near the local minima. (right) After only 50
iterations, a lot of the chains haven’t converged, but our Algorithm 1 captures all local minima.

analyze the asymptotic variance of both SGD and m-SGD. To estimate the asymptotic variance of
η
−1/2
n xn for the algorithms defined in (1.2) or (1.3), we run 1000 independently initialized chains,

each for an extended 2, 000, 000 iterations. As shown in Zhu et al. (2023); Chen et al. (2020), for
averaged-SGD, the rate of convergence of the covariance estimator to the corresponding asymptotic
covariance matrix is relatively slow, approximately n−1/8 to n−1/6, when the step-size parameter
α is close to 1/2. This rate is significantly slower than the asymptotic convergence rate of both
the SGD iterates xn and their averaged counterpart x̄n =

∑n
i=1 xi. Let the estimated covariance

matrix for (1.2) and (1.3) based on the 1000 independently initialized SGD chains, be denoted as Σ̂1

and Σ̂2(β), respectively. Define the element-wise division operator as R̂ij(β) = (Σ2(β))ij/(Σ1)ij .
Table 1 provides the value of |R̂(β)|∞ for five different values of β = 0.1, 0.3, 0.5, 0.7, 0.9, corre-
sponding to the four distinct local minima of E[f(x, y, ξ)], where f : R3 → R is defined as in (A.1).
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All numerical values have been rounded to 3 decimal places. On average, the R̂ values correspond
to (1− β)−1 across all four local minima, justifying the inflated variance in Theorem 4.

β Local Minima |R̂(β)|∞ 1/(1− β)

0.1

(-3.779,-3.283) 1.046 1.111
(3,2) 1.183

(-2.805,3.131) 1.200
(3.584,-1.848) 1.061

0.3

(-3.779,-3.283) 1.586 1.429
(3,2) 1.445

(-2.805,3.131) 1.478
(3.584,-1.848) 1.181

0.5

(-3.779,-3.283) 2.258 2.000
(3,2) 2.019

(-2.805,3.131) 2.010
(3.584,-1.848) 2.087

0.7

(-3.779,-3.283) 3.544 3.333
(3,2) 2.919

(-2.805,3.131) 2.894
(3.584,-1.848) 3.787

0.9

(-3.779,-3.283) 9.626 10.000
(3,2) 12.390

(-2.805,3.131) 10.733
(3.584,-1.848) 10.467

Table 1: Empirical ratio of asymptotic covariances of m-SGD (1.3) and vanilla SGD (1.2) iterates.

Appendix B. Auxiliary results for vanilla SGD

In this section we collect all the subsidiary results leading up to the proof of Theorem 1. First we
will look at proving Proposition 3. Before we detail the proof of Proposition 3, we establish the
convention A(x) = ∇2F (x), and S(x) = E[∇f(x, ξ)(∇f(x, ξ))⊤]. Moreover, without loss of
generality, let a = 0; otherwise we can consider yn − a instead of yn. We will also be required
to define the three following oracle approximations. Let g(0, ξi) = ∇F (0) − ∇f(0, ξi). With the
notation A := A(0) and S := S(0), consider the oracle iterates (2.6)-(2.8). Our proof depends
on a series of careful approximations facilitating a large sample convergence to a Gaussian random
variable. Such approximations will often require the use of constants, accompanying an optimal
rate. In particular, we will use the notations C, c1 and c2 for all such constants, which may depend
on α, η, L, L′ and miny∈J0 µ(y). The value of these constants may change from line-to line without
being explicitly stated.

The proof of Proposition 3 follows directly from the following sequence of results, all of which
are stated and proved with the notion that a = 0. The main motivation behind the proof is linearizing

2
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the projected SGD sequences {yn}, similar to Polyak and Juditsky (1992), which enables global
convexity to kick in, ensuring convergence to Gaussianity.

Lemma 11 Under the assumptions of Proposition 3, it holds that

sup
x0∈V

E[|yn(x0)|2] = O(n−α).

Lemma 12 Grant the assumptions of Proposition 3. Then for a given λ > 0, it holds that,

sup
x0∈V

P(η−1/2
n |yn(x0)− y(1)n (x0)| > λ) → 0, as n→ ∞.

Lemma 13 Under Proposition 3, for a given λ > 0, one obtains

sup
x0∈V

P(η−1/2
n |y(1)n (x0)− y(2)n (x0)| > λ)→0, as n→ ∞.

Lemma 14 For λ > 0, it holds that

sup
x0∈V

P(η−1/2
n |y(2)n (x0)− y(3)n (x0))| > λ) → 0,

as n→ ∞, if we grant the assumptions of Proposition 3.

Lemma 15 Define gn(x0) := Σ(a)−1/2η
−1/2
n (y

(3)
n (x0)−a) for the same Σ(·) as in Proposition 3.

Then, under the Assumptions of Proposition 3, for a Borel Measurable set A ⊆ Rd, it holds that

sup
x0∈V

|P(gn(x0) ∈ A)− Φ(A)| → 0, as n→ ∞, (B.1)

where Φ(·) denotes the measure induced by Z d
= N(0, Id).

B.1. Proofs of the Lemmas

B.1.1. PROOF OF LEMMA 11

Write

|yn(x0)|2 ≤ |yn−1(x0)− ηn∇F (yn−1(x0)) + ηng(yn−1(x0), ξn)|2

where, in light of Assumption 2.4, g(yn−1(x0), ξn) = ∇F (yn−1(x0)) − ∇f(yn−1(x0), ξn) are
martingale differences with respect to the upward filtration Fn = σ(ξ1, . . . , ξn). Crucial to our
argument is the observation |yn(x0) − a| ≤ γ, which enables the application of Assumptions 2.2
and 2.3. Subsequently, a little algebra reveals that, for all sufficiently large n it holds

E[|yn(x0)|2] ≤ E[|yn−1(x0)− ηn∇F (yn−1(x0))|2] + η2nE[|g(yn−1(x0), ξn)|2]
(Assumption 2.2) ≤ (1− ηnc1)E[|yn−1(x0)|2] + η2nE[|g(yn−1(x0), ξn)|2] + Cη2n

(Assumption 2.3) ≤ (1− ηnc1)E[|yn−1(x0)|2] + 2η2nE[|g(0, ξn)|2 + L2|yn−1(x0)|2] + Cη2n

≤ (1− ηnc2)E[|yn−1(x0)|2] + Cη2nE[|g(0, ξn)|2]
...

≤ |x0|2
n∏

i=1

(1− ηic2) + C
n∑

i=1

η2i

n∏
k=i+1

(1− ηkc2). (B.2)

3
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We will leverage Lemma A.1 of Zhu et al. (2023) on (B.2). In view of elementary inequality∫ a
1 x

−2αex
1−α

dx ≤ Ca−αea
1−α

for a > 1, along with V being closed, one obtains

sup
x0∈V

E[|yn|2] ≤ C(exp(−c1n1−α) sup
x0∈V

|x0|2 + n−α) = O(n−α),

which completes the proof.

B.1.2. PROOF OF LEMMA 12

Note that,

sup
x0∈V

E[|yn(x0)− y(1)n (x0)|2] ≤ sup
x0∈V

E[|yn−1(x0)− y
(1)
n−1(x0)− ηn(∇F (yn−1(x0))−∇F (y(1)n−1(x0)))+

ηn(g(yn−1(x0), ξn)− g(0, ξn))|2]

(Assumption 2.3) ≤ (1− ηnc1) sup
x0∈V

E[|yn−1(x0)− y
(1)
n−1(x0)|

2] + η2n sup
x0∈V

E[|yn−1(x0)|2]

≤ (1− ηnc1) sup
x0∈V

E[|yn−1(x0)− y
(1)
n−1(x0)|

2] +O(η3n), (B.3)

where (B.3) follows from Lemma 11. Therefore, an application of Lemma A.1 of Zhu et al. (2023)
along with noting that

∫ a
1 x

−3αeCx1−α
≲ a−2αeCa1−α

for a > 1, yields

sup
x0∈V

E[|yn(x0)− y(1)n (x0)|2] ≲ e−Cn1−α
sup
x0∈V

|x0|2 + n−2α = O(η2n).

In light of ηn → 0 as n→ ∞, we obtain Lemma 12.

B.1.3. PROOF OF LEMMA 13

Observe that

E[|y(1)n (x0)− y(2)n (x0)|] ≤ E[|y(1)n−1(x0)− y
(2)
n−1(x0) + ηn(∇F (y(1)n−1(x0))−Ay

(2)
n−1(x0))|]

≤ E[|(I − ηnA)(y
(1)
n−1(x0)− y

(2)
n−1(x0))|] + ηnE[|∇F (y(1)n−1(x0))−Ay

(1)
n−1(x0)|]

≤ (1− ηnc1)E[|y(1)n−1(x0)− y
(2)
n−1(x0)|] + CηnE[|y(1)n−1(x0)|

2], (B.4)

where the last inequality is due to Taylor Series expansion. A treatment similar to Lemma 11 yields
supx0∈V E[|y(1)n−1(x0)|2] = O(ηn). Thus, in light of (B.4), and using Lemma A.1 of Zhu et al.
(2023) along with

∫ a
1 x

−2αeCx1−α
dx ≤ Ca−αeCa1−α

, we arrive at

sup
x0∈V

E[|y(1)n (x0)− y(2)n (x0)|] ≲ e−Cn1−α
sup
x0∈V

|x0|+
n∑

k=1

η2k

n∏
s=k+1

(1− ηsc1) = O(ηn). (B.5)

B.1.4. PROOF OF LEMMA 14

Consider the sub-sequence ik = k2, k ≥ 1. Lemma B.3 in Chen et al. (2020) yields supx0∈V E[|y(3)n |2] =
O(n−α). Moreover, note that, for i ∈ [ik, ik+1),

y
(3)
i (x0)− y

(3)
ik

(x0) = (Y i
0 − Y ik

0 )x0 +

ik∑
s=1

ηs(Y
i
s − Y ik

s )g(0, ξs) +

i∑
t=ik+1

ηtY
i
t g(0, ξt),

4



STABLE CONVERGENCE OF SGD

where Bl = I − ηlA, and Y n
i =

∏n
j=i+1Bl, with Y n

i = I for i ≥ n. The matrices Y n
i are

ubiquitous in Stochastic approximation literature, appearing in the context of asymptotic analysis
of SGD sequences as early as Sacks (1958) and Ruppert (1988), as well as in Polyak and Juditsky
(1992). Clearly,

|y(3)i (x0)− y
(3)
ik

(x0)| ≲ |Y i
0 − Y ik

0 |+
ik∑
s=1

|g(0, ξs)|s−αeCs1−α
(e−Ci1−α

k − e−Ci1−α
k+1 )+

i∑
s=ik+1

|g(0, ξs)|s−αeCs1−α−Ci1−α
k .

Hence, due to Kolmogorov’s maximal inequality (e.g., Theorem 22.4 in Billingsley (2012)), one
obtains

sup
x0∈V

E
[

max
ik≤i<ik+1

|y(3)i (x0)− y
(3)
ik

(x0)|2
]

≲|e−Ci1−α
k − e−Ci1−α

k+1 |+ E[|g(0, ξ)|2]
[
(e−Ci1−α

k − e−Ci1−α
k+1 )

ik∑
s=1

s−2αeCs1−α
+ e−Ci1−α

k

ik+1∑
s=ik+1

s−2αeCs1−α

]
≲|e−Ci1−α

k − e−Ci1−α
k+1 |+ E[|g(0, ξ)|2](k + 1)−2αeC(k+1)2−2α−Ck2−2α

= O(k−2α), (B.6)

where we have used eCk1−2α
= O(1), sinceα > 1/2. Consider the set Bk(x0) := {maxn≥k |y

(3)
n (x0)| ≤

γ}. From (B.6), one obtains

sup
x0∈V

P(Bc
k(x0))

≤
∞∑

s=⌊
√
k⌋

[
sup
x0

P(|y(3)is
(x0)| > γ/2) + sup

x0

P( max
is≤i≤is+1

|y(3)i (x0)− y
(3)
is

(x0)| > γ/2)

]

≲
∞∑

s=⌊
√
k⌋

s−2α → 0, as k → ∞.

Therefore, infx0∈V P(Bk(x0)) → 1 as k → ∞. On the other hand, for n ≥ k, under Bk(x0) it holds
that

η−1/2
n |y(2)n (x0)− y(3)n (x0)|

=η−1/2
n |ΠB(0,γ)(y

(2)
n−1(x0)− ηnAy

(2)
n−1(x0) + ηng(0, ξn))−ΠB(0,γ)(y

(3)
n−1(x0)− ηnAy

(3)
n−1(x0) + ηng(0, ξn))|

≤η−1/2
n (1− ηnc1)|y(2)n−1(x0)− y

(3)
n−1(x0)|

≤|y(2)k (x0)− y
(3)
k (x0)|

n∏
s=k+1

(1− ηsc1) ≲ 2γnα/2e−Cn1−α+Ck1−α → 0, as n→ ∞,

which completes the proof.
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B.1.5. PROOF OF LEMMA 15

Recall Y n
i from the proof of Lemma 14. Note that g(0, ξi) are independent random vectors, with

E[g(0, ξi)g(0, ξi)⊤] = S. Let Bn(x0) = Cov(y
(3)
n (x0)). Clearly, from (2.8),

Bn(x0) = (I − ηnA)Bn−1(x0)(I − ηnA) + η2nS. (B.7)

Let Σ be the unique matrix satisfying Lyapunov Equation

AΣ+ ΣA = S. (B.8)

We pause for a moment to relate Σ to the previous results on asymptotic analysis of stochastic
approximations. Indeed, if d = 1, Σ = 2−1SA−1, matching the expression by Chung (1954).
In general, letting A = PΛP⊤ be the eigen-value decomposition of A, some elementary algebra
yields that Σ = PMP⊤ with

Mij = (P⊤SP )ij(Λii + Λjj)
−1,

which again echoes the expression (2.2.7) in Fabian (1968). The crux of our argument relies on
proving

η−1
n ∥Un(x0)∥2 = o(1), Un(x0) = Bn(x0)− ηnΣ. (B.9)

From (B.7), one obtains

Un(x0) = (I − ηnA)Un−1(x0)(I − ηnA) +Rn, (B.10)

where

Rn = ηn−1(I − ηnA)Σ(I − ηnA)− ηnΣ+ η2nS

= (ηn−1 − ηn)Σ + ηn−1η
2
nAΣA− ηn(ηn−1 − ηn)S, (B.11)

where the last line utilizes (B.8). Hence, in light of (B.11) and α ∈ (1/2, 1), (B.10) implies that

∥Un(x0)∥2 ≤ (1− ηnc)∥Un−1(x0)∥2 +O(n−(α+1))

≲ e−cn1−α∥U0(x0)∥2 +
n∑

i=1

i−(α+1)e−cn1−α+ci1−α

≲ e−cn1−α∥U0(x0)∥2 + e−cn1−α

∫ n

1
x−α−1ecx

1−α
dx = O(n−1),

which directly shows (B.9). Therefore, Cov(η−1/2
n yn(x0)) → Σ as n→ ∞. From (2.8), write

η−1/2
n y(3)n (x0) = η−1/2

n Y n
1 x0 +

n∑
i=1

η−1/2
n ηiY

n
i g(0, ξi) := Dn(x0) +

n∑
i=1

Ai,ng(0, ξi), (B.12)

where we denoteAi,n = η
−1/2
n ηiY

n
i . From the treatment above, one obtains that Σn := Cov(

∑n
i=1Ai,ng(0, ξi)) →

Σ as n→ ∞. Moreover, supx0∈V Dn(x0)
a.s.→ 0 via a direct application of Lemma A.1 of Zhu et al.

6
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(2023). Thus, in order to deduce asymptotic normality, all we require is to verify the Lindeberg
condition for

∑n
i=1Ai,nui, with ui = g(0, ξi) being i.i.d. For a r > 0, we aim to show

n∑
i=1

E[∥Σ−1/2
n Ai,nui∥22I{∥Σ−1/2

n Ai,nui∥2 > r}]

≤E[u⊤1 (
n∑

i=1

Ai,nΣ
−1
n A⊤

i,n)u1I{max
1≤i≤n

u⊤1 (Ai,nΣ
−1
n A⊤

i,n)u1 > r2}] → 0 as n→ ∞. (B.13)

Clearly, from the convergence of Σn, ∥Σ−1
n ∥2 = O(1). Moreover,

n∑
i=1

∥Ai,n∥2 ≲ nα
n∑

i=1

i−2α∥Y n
i ∥2 = O(1)

from yet another application of Lemma A.1 of Zhu et al. (2023). On the other hand, ∥Σn∥2 = O(1),
and

max
1≤i≤n

∥Ai,n∥22 ≲ nαe−cn1−α
max
1≤i≤n

i−2αeci
1−α ≤ max{nαe−cn1−α

, n−α} = o(1).

Thus

n∑
i=1

E[∥Σ−1/2
n Ai,nui∥22I{∥Σ−1/2

n Ai,nui∥2 > r}] ≲ E[∥u1∥22I{∥u1∥2o(1) > r}] → 0 as n→ ∞,

which shows (B.13). Therefore, from the definition of weak convergence, we have

sup
x0∈V

|P(gn(x0)− Σ−1/2Dn(x0) ∈ A)− Φ(A)| → 0,

for any Borel set A. In light of almost sure convergence of supx0∈V Dn(x0), the proof is completed.

Appendix C. Proof of Theorem 4

The two key ingredients of the proof of Theorem 4 are Propositions 8 and 9. Subsequently, we
prove these results.

C.1. Proofs of the Propositions

We will prove the results one-by-one. The proof of Proposition 8 requires the following modified
versions of Lemma D.3 and Proposition D.2 of Mertikopoulos et al. (2020).

Lemma 16 (m-SGD version of Lemma D.3 of Mertikopoulos et al. (2020)) Under the assump-
tions of Proposition 8, it holds that

C.1. Ωn+1 ⊆ Ωn and En+1 ⊆ En.

C.2. En−1 ⊆ Ωn.

7
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C.3. Consider the ”large noise” event

Ẽn ≡ En−1\En = En−1 ∩ {Rn > ε}
= {Rk ≤ ε for all k = 1, 2, . . . , n− 1 and Rn > ε}

and let R̃n = Rn1En−1 denote the cumulative error subject to the noise being ”small” until
time n. Then, for a constant C > 0, it holds

E
[
R̃n

]
≤ E

[
R̃n−1

]
+ Cη2n − εP

(
Ẽn−1

)
where, by convention, we write Ẽ0 = ∅ and R̃0 = 0.

Lemma 17 Fix δ > 0. Under the assumptions of Proposition 8, it holds that

P (En) ≥ 1− δ for all n = 1, 2, . . .

C.1.1. PROOF OF PROPOSITION 8

The proof follows along the lines of Theorem 4.1 of Mertikopoulos et al. (2020), however, with
important changes necessitated by the m-SGD structure. For the sake of completeness, we provide
a streamlined proof. Choose ε > 0 such that

U =
{
x ∈ Rd : ∥x− a∥2 ≤ 2ε+

√
ε
}
⊆ B(a, γ),

and we will assume that X1 is initialized in a neighborhood

U1 =
{
x ∈ Rd : ∥x− a∥2 ≤ ε

}
.

Subsequently, without loss of generality, we will take a = 0. Denote Dn := |θn|2. If θn−1 ∈
B(0, γ), then from (1.3) and Assumption 2.2, it follows

Dn = |θn−1 − ηn∇F (θn−1)− βvn−1 + ηng(θn−1, ξn)|2

≤ (1− cηn)Dn−1 + (η2n(|∇F (θn−1)|2 + |g(θn−1, ξn)|2) + β2|vn−1|2) + 2β(ηn∇F (θn−1)− θn−1)
⊤vn−1

+ 2ηn(θn−1 − ηn∇F (θn−1))
⊤g(θn−1, ξn) + 2βηnv

⊤
n−1g(θn−1, ξn)

≤ Dn−1 + Tn−1 +Mn−1, (C.1)

where

Tn := η2n+1(|∇F (θn)|2 + |g(θn, ξn+1)|2) + β2|vn|2,
Mn := 2β(ηn+1∇F (θn)− θn)

⊤vn + 2ηn+1(θn − ηn+1∇F (θn))⊤g(θn, ξn+1) + 2βηn+1v
⊤
n g(θn, ξn+1).

Denote Sn :=
∑n

i=1 Ti, and Gn :=
∑n

i=1Mi. Consider the squared errors

Rn := Sn + |Gn|2,

and define the following two events:

Ωn ≡ Ωn(U) = {θn ∈ U for all k = 1, 2, . . . , n}

8
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and
En ≡ En(ε) = {Rk ≤ ε for all k = 1, 2, . . . , n} .

Note that ΩU = ∩∞
n=1Ωn. Therefore, 5.2 in Lemma 16, and Lemma 17 yields

P(ΩU ) = inf
n

P(Ωn) ≥ inf
n

P(En−1) ≥ 1− δ,

which completes the proof.
Now we turn to Proposition 9.

C.1.2. PROOF OF PROPOSITION 9

Without loss of generality, we assume a = 0, otherwise we will work with θn − a. Moreover, for
the sake of cleaner presentation we will ignore the supt0∈V×V term from the statements and the
proofs of the subsequent assertions, keeping it implicit that all the arguments hold uniformly over
t0 ∈ V × V , just as in the proof of Proposition 3. In fact, modulo some modifications necessitated
by the introduction of momentum, we will majorly mirror the proof of Proposition 3. The following
result, corresponding to Lemma 11, yields a control on θn. The proof is provided in Section C.2.3.

Lemma 18 Under the assumptions of Proposition 9,

E[|θn|2] = O(n−α).

Now, akin to (2.6)-(2.8), we resort to defining a series of intermediate oracle m-SGD sequences.
Consider

v(1)n = ΠB(0,γ)(βv
(1)
n−1 + ηn∇F (θ(1)n−1)− ηng(0, ξn)),

θ(1)n = ΠB(0,γ)(θ
(1)
n−1 − βv

(1)
n−1 − ηn∇F (θ(1)n−1) + ηng(0, ξn)); (C.2)

v(2)n = ΠB(0,γ)(βv
(2)
n−1 + ηnAθ

(2)
n−1 − ηng(0, ξn)),

θ(2)n = ΠB(0,γ)(θ
(2)
n−1 − βv

(2)
n−1 − ηnAθ

(2)
n−1 + ηng(0, ξn)); (C.3)

v(3)n = βv
(3)
n−1 + ηnAθ

(3)
n−1 − ηng(0, ξn),

θ(3)n = θ
(3)
n−1 − v(3)n . (C.4)

A proof similar to Lemmas 12 and 18 shows that

∥θn − θ(1)n ∥2 = O(η2n),which implies η−1/2
n |θn − θ(1)n | P→ 0. (C.5)

Moreover, techniques from Lemma 13 can be employed to obtain

∥θ(1)n − θ(2)n ∥ = O(ηn),which implies η−1/2
n |θ(1)n − θ(2)n | P→ 0. (C.6)

Next, we will argue that θ(3)n
a.s.→ 0. In fact, a proof along the lines of Lemma 18 shows that

E[|θ(3)n |2] = O(ηn), and E[|v(3)n |2] = O(η2n). Since
∑

i η
2
i < ∞, Borel-Cantelli Lemma indicates

9
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that |v(3)n | a.s.→ 0. Denote Zn := θ
(3)
n − β

1−β v
(3)
n . Note that,

Zn = (I − ηn
1− β

)Zn−1 +
β

(1− β)2
ηnAv

(3)
n−1 +

ηn
1− β

g(0, ξn)

...

= Qn
0Z0 +

β

(1− β)2
A

n∑
i=1

ηiQ
n
i v

(3)
i−1 −

1

1− β

n∑
i=1

ηiQ
n
i g(0, ξi),

where Qn
i = (I − ηn

1−β ) · · · (I −
ηi+1

1−β ), Q
n
n = I . Therefore, with ik := k2, for n ∈ (ik, ik+1],

|Zn − Zik | ≤ |Qik
0 −Qn

0 ||Z0|+
β

(1− β)2

( ik∑
i=1

ηi|Qik
i −Qn

i ||v
(3)
i−1|+

n∑
i=ik+1

ηiQ
n
i |v

(3)
i−1|

)
+

1

1− β

( ik∑
i=1

ηi|Qik
i −Qn

i ||g(0, ξi)|+
n∑

i=ik+1

ηiQ
n
i |g(0, ξi)|

)
. (C.7)

For the second term in (C.7), using E[|v(3)i |2] = O(η2i ),

E
[

max
ik<n≤ik+1

( ik∑
i=1

ηi|Qik
i −Qn

i ||v
(3)
i−1|+

n∑
i=ik+1

ηiQ
n
i |vi−1|

)2]

≲(k + 1)2
[ ik∑

i=1

η4i |Q
ik
i −Q

ik+1

i |2 +
ik+1∑

i=ik+1

η4i |Qn
i |2

]

≲k2
[
(e−Ci1−α

k − e−Ci1−α
k+1 )

k2∑
i=1

i−4αeCi1−α
+ e−Cik+1

(k+1)2∑
i=k2+1

i−4αeCi1−α

]
≲k2−6αeC(k+1)2−2α−k2−2α

= O(k2−6α). (C.8)

On the other hand, for the third term in (C.7), a treatment same as (B.6), we obtain

E
[

max
ik<n≤ik+1

( ik∑
i=1

ηi|Qik
i −Qn

i ||g(0, ξi)|+
n∑

i=ik+1

ηiQ
n
i |g(0, ξi)|

)2]
= O(k−2α). (C.9)

Combining (C.7)-(C.9), we arrive at

E[ max
ik<n≤ik+1

|Zn − Zik |
2] = O(k−2α + k2−6α).

Since
∑

i(i
−2α + i2−6α) < ∞ in view of α > 1/2, therefore via Borel-Cantelli Lemma and

|Zik |
a.s.→ 0 (recall that E[|Zi|2] = O(ηi)), we have Zn

a.s.→ 0. Finally we have θ(3)n
a.s.→ 0 by virtue

of |v(3)n | a.s.→ 0. For some k ∈ N, consider the set Ak := {maxn≥k |θn| ∨ |vn| ≤ γ}. Moreover, for
n ≥ k, it holds conditional on Ak,

θ(3)n = ΠB(0,γ)((I − ηnA)θ
(3)
n−1 − βv

(3)
n−1 + ηng(0, ξn))

v(3)n = ΠB(0,γ)(βv
(3)
n−1 + ηnAθ

(3)
n−1 − ηng(0, ξn)).

10
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Therefore, letting Sn = θ
(3)
n − θ

(2)
n , Tn = v

(3)
n − v

(2)
n , and Wn = |Sn|+ β

1−β |Tn−1|, it is immediate
that

|Sn| ≤ |(I − ηnA)Sn−1 − βTn−1| (C.10)

|Tn| ≤ |βTn−1 + ηnASn|. (C.11)

Clearly,

|Tn| ≤ β|Tn−1|+O(ηn),

...

≤ βn−k|Tk|+ C

n∑
i=k+1

βn−iηi

≤ O(ηn) (C.12)

holds almost surely for all n ≥ k conditional on Ak. On the other hand, the following implication
can be deduced from (C.11):

Wn ≤ (1− ηnλmin(A) + ηnλmax(A)
2β − β2

1− β
)Wn−1 +

β

1− β
ηn(λmin(A)− λmax(A)

β

1− β
)|Tn−2|+O(η2n).

(C.13)

From the choice of β in (3.1), β satisfies

κ(A)−1 =
λmin(A)

λmax(A)
≥ 2β − β2

1− β
>

β

1− β
.

Therefore, (C.13) and (C.12) can be condensed to yield

Wn ≤ (1− ηnc)Wn−1 +O(η2n)

for all n ≥ k conditional on Ak. From Lemma 4 of Chung (1954), |Wn| = O(ηn) conditional on
An, which readily implies, in light of P(Ak) → 1 as k → ∞, that η−1/2

n |θ(2)n − θ
(3)
n | → 0 almost

surely as n→ ∞. Finally we deal with the convergence of θ(3)n . Define

Ln = θ(3)n − β

1− β
v(3)n .

Note that, from (C.4) and v(3)n , it follows that

Ln = (I − ηn
1− β

A)Ln−1 +
ηn

1− β
g(0, ξn) +OP(η

2
n). (C.14)

Therefore, following the analysis of Lemma 15, we have the Gaussian approximation result, which
we then combine with Proposition 8 in the manner of (2.10) to (2.19) to obtain (3.6). Note that
the extra factor of (1 − β) can be seen to occur here (C.14), when contrasted with corresponding
equation of vanilla SGD, (2.8).

11
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C.2. Auxiliary results

In this section we document the proofs of all the Lemmas used in the proofs of Theorem 4.

C.2.1. PROOF OF LEMMA 16

7.1. is trivial by definition of Ωn and En. Following Mertikopoulos et al. (2020), we employ
mathematical induction for 7.2. Note that E0 ⊆ Ω1 trivially, since Ω1 = Ω. For the inductive step,
suppose En−1 ⊆ Ωn holds. Consider a sample point in En, i.e Rk ≤ ε for all k = 1(1)n. Since
En ⊆ En−1 ⊆ Ωn, it follows that θk ∈ U ⊆ B(0, γ) for all k = 1(1)n. Therefore, applying (C.1)
in a telescopic manner for k = 1, . . . , n, we arrive at

Dn+1 ≤ D1 + Sn +Gn ≤ D1 +Rn +
√
Rn ≤ 2ε+

√
ε,

which shows Ωn+1 occurs, and thus En ⊆ Ωn+1. For 7.3., decompose R̃n as

R̃n = Rn1En−1 = Rn−11En−1 + (Rn −Rn−1)1En−1

= Rn−11En−2 −Rn−11Ẽn−1
+ (Rn −Rn−1)1En−1

= R̃n−1 + (Rn −Rn−1)1En−1 −Rn−11Ẽn−1
(C.15)

where we used the fact that En−1 = En−2\Ẽn−1 so 1En−1 = 1En−2 − 1Ẽn−1
that En−1 ⊆ En−2

). From the definition of Rn, one finds,

Rn −Rn−1 = Tn +M2
n + 2Gn−1Mn.

Now, due to Assumption 2.4,

E[Mn1En−1 |Fn] =2βE[1En−1(ηn+1∇F (θn)− θn)
⊤vn|Fn]

≤2βE[1Ωn(ηn+1∇F (θn)− θn)
⊤vn|Fn].

Therefore, from En−1 ⊆ Ωn,

E[Gn−1Mn1En−1 ] ≤
√
εE[Mn1En−1 ]

≤ 2
√
γβE[1Ωn(|ηn+1∇F (θn)⊤vn|+ |θ⊤n vn|)]

≤ Cη2n,

where the final assertion follows from an argument same as Lemma 18. Note that multiplication
with 1Ωn allows all the assumptions 2.2-2.4 to be applicable, since U ⊆ B(0, γ). Similarly,

E[M2
n1En−1 ] ≤ Cη3n, and E[Tn1En−1 ] ≤ Cη2n.

Putting it all together, clearly

E[(Rn −Rn−1)1En−1 ] ≤ Cη2n, (C.16)

for a constant C > 0. Moreover, we have Rn−1 > ε if Ẽn−1 occurs, so the last term becomes

E
[
Rn−11Ẽn−1

]
≥ εE

[
1Ẽn−1

]
= εP

(
Ẽn−1

)
. (C.17)

The proof of 5.3 is completed by combining (C.15), (C.16) and (C.17).

12



STABLE CONVERGENCE OF SGD

C.2.2. PROOF OF LEMMA 17

Follows directly from Lemma 16 and the proof of Proposition D.4 in Mertikopoulos et al. (2020).

C.2.3. PROOF OF LEMMA 18

Recall Lemma 10. Note that, via Assumptions 2.2-2.4,

E[∥θn∥2] ≤ E[∥θn−1 − ηn∇F (θn−1)− βvn−1∥2] + η2nE[∥g(θn−1, ξn)∥2]
≤ (1− ηnµ)∥θn−1∥2 − 2βE[θ⊤n−1vn−1] +O(η2n), (C.18)

where the final assertion follows from (3.8). Moreover, letting Zn := E[θ⊤n vn], one has

|Zn| ≤ |E[(θn−1 − βηn∇F (θn−1))
⊤(βvn−1 + ηn∇F (θn−1))]|+O(η2n)

≤ β(1− ηnµ)|Zn−1|+ ηn(L
2µ−1 − βµηn)E[∥θn−1∥2] +O(η2n).

Choose ζ ∈ (2β(1 − β)−1, µ2L−2 ∧ 1). By our choice of ζ, (2 + ζ)β < ζ, and µ > ζL2µ−1.
Therefore, with c := µ− ζL2µ−1 > 0,

E[∥θn∥2] + ζ|Zn|
≤(1− ηnµ+ ηn(L

2µ−1 − βµηn)ζ)E[∥θn−1∥2] + (2β + ζβ(1− ηnµ))|Zn−1|+O(η2n)

≤(1− ηnc)(E[∥θn−1∥2] + ζ|Zn−1|) +O(η2n). (C.19)

A treatment similar to that following (B.2) in Lemma 11 yields that ∥θn∥2 ≤ ∥θn∥2 + ζ|Zn−1| =
O(ηn). Note that this automatically implies that |Zn| = O(η2n).
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