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Summary 15

In this paper, we investigate the problem of detecting synchronization of a single change-point
across components of a multivariate time series. The identification of synchronized change-points
can often lead to finding a unanimous reason behind such changes whereas rejection might con-
sequently prompt further analysis. Our proposed test statistic is simple to perceive, but its null
distribution can be highly nontrivial to explicitly characterize. To overcome this, we employ a 20

Gaussian approximation result, assisted by a clever and agnostic (to the existence of change-point)
estimation of covariance matrix. Extensive simulations are provided to corroborate our theoreti-
cal results. We also provide two interesting real-world applications and discuss the implications
of our findings based on the statistical tests.
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1. Introduction
Consider a multiple series X8 = (-8,1, . . . , -8,3)) ∈ R3 with the mean-noise structure as

X8 = -8 + e8 = (`8,1, . . . , `8,3)) + e8 , 8 = 1, . . . , =, (1.1)

where e8 ∈ R3 is a stationary time series. Throughout this paper, we assume E[e8] = 0. For each
1 ≤ 9 ≤ 3, denote the 9-th component of the time series, (-1, 9 , . . . , -=, 9)) , as ^· 9 . Additionally,
we assume for each stream/co-ordinate series 9 , there is at most one change-point. If ^· 9 has a 30
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change-point, namely,

`8 9 =

{
`!
9
, if 8/= ≤ g9 ,

`'
9
, if 8/= > g9

, 1 ≤ 8 ≤ =, (1.2)

where g9 ∈ (0, 1) is the (re-scaled) change-point, then the jump size X9 at the point g9 is defined
as X9 = `'9 − `!9 . For notational convenience, if the ^· 9 has no such change-point, we set X9 = 0.
Our focus in this paper lies in testing ‘synchronization hypothesis’, described as follows

�0 : g1 = . . . = g3 . (1.3)

Note that, if X9 = 0, then g9 is not well-defined. Assume : > 0 out of 3 coordinate-series have35

true change-point at indices A1, . . . , A: . If the true change-locations are ‘synchronized’ i.e. gA1 =
. . . = gA: = ; ∈ (0, 1) (say), then we set the convention that �0 in (1.3) is true, as one could vacu-
ously think g9 = ;, for any 9 ∉ {A1, . . . , A:} with corresponding X9 = 0. As we start with a simple
and yet interpretable model in (1.1), our aim in this paper is to cover a large class of possibly
non-linear, stationary multiple time series (e8). Change-point analysis for multiple time series40

almost always makes the simplifying assumption of a synchronized change-point, which makes
the models piece-wise stationary and allows for simplified analysis. Our paper, to the best of our
knowledge, is a first in proposing a statistical test to validate the assumption of synchronization.

Change-point testing and detection for time series data has a widespread literature spanning
over several decades starting from Page (1954, 1955), and then progressing through numerous45

seminal works Chow (1960); Hinkley (1970); Hinkley & Schechtman (1987); Cobb (1978); Sha-
ban (1980); Worsley (1986); Krämer et al. (1988). A great overview of the early progression of
this literature can be found in Basseville & Nikiforov (1993). For univariate time-series, we refer
to Wang et al. (2020); Madrid Padilla et al. (2021) for a comprehensive summary of least-square
based and general non-parametric estimates of change-points, as well as some crucial optimal-50

ity results. The literature for change-point detection and inference for panel data or multivariate
time series, albeit much smaller, also has a long history by now. A random break model with the
breakpoints having an independent and identical distribution in a Bayesian framework was dis-
cussed in Joseph & Wolfson (1992, 1993). Later this was extended to autoregressive models in
Joseph et al. (1997). While they allow for different breaks in different series and put a distribution55

around it to describe its randomness, their models only allow for stationarity across components,
which might be too restrictive for panel data as Bai (2010) points out succinctly. Bai et al. (1998)
proposes construction of confidence interval for this shared change-point, while allowing for only
a subset of co-ordinates to have a proper change. Horváth et al. (1999) tests for existence of such
a shared change-point. Interested readers might take a look at Hsiao (2003) and Arellano (2003)60

for developments on this topic. A similar test for existence of change-points was developed in
Zhang et al. (2010) based on scan and segmentation algorithms, and in Horváth & HuYsková
(2012) using adaptation of the CUSUM method to panel data. Bai (2010) constructs limiting
distribution for such a shared change-point in mean and variance for linear time series. Dette &
Wied (2016) discusses hypothesis testing about the magnitude of change in mean for multivari-65

ate data in the non-vanishing difference regime. Kim (2014); Barigozzi et al. (2018); Westerlund
(2019) investigated estimation of the change point in panel data, wherein the cross-sectional de-
pendence is modeled by a common factor model, which effectively makes the cross-sectional
dependence low-dimensional. Li et al. (2016) also discusses a problem of similar flavor; they
estimate the common breaks, but allow for unobservable fixed effect. Westerlund (2019) pro-70

vides a consistent estimation technique for an unknown shared change-point in mean. Inference
on common change-point for panel data with independence and cross-sectional dependence are
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discussed at Bhattacharjee et al. (2017) and Bhattacharjee et al. (2019) respectively. For non-
parametric change-point detection, Gey & Lebarbier (2008); Madrid Padilla et al. (2022, 2023)
also assume a shared change-point across dimensions in a multivariate time series. In our nota- 75

tions, all these works assume that in (1.1), ^· 9 is independent of ^·: for 9 ≠ : . The assumption
of common change-point induces piece-wise stationarity for regimes without any change-point,
and thus it becomes easier to use tools developed for stationary multivariate series even in set-
tings where there is significant spatial or contemporaneous correlations. But unfortunately, such
an assumption could turn out quite restrictive, as it is not very rare that abrupt changes occur at 80

different times, at different components or spatial locations of interest. Except for the Bayesian
treatments at Joseph & Wolfson (1992, 1993); Joseph et al. (1997) and a very recent works Wang
et al. (2023); Wu et al. (2024), we believe that the vast literature of multivariate time series very
rarely allowed change-points to be asynchronized across the components and a solid theoretical
framework to test such a common assumption is probably long due. 85

We now discuss a few real-life scenarios where synchronization of potential change-points
can be questionable. Consider a neuroimage data comprising of multiple time series emanating
from neighboring voxels. Under certain medication or intervention, whether these series act in a
synchronous fashion or not is an important medical question. In the research of Human Activity
Recognition (HAR), Kaul et al. (2021); Anguita et al. (2013) analyze multivariate time series 90

obtained from different health tracker from smartphones. The change-points or the interventions
are introduced when an individual changes their activity. In the world of climate data, such asyn-
chronous behavior is not uncommon either, in say, change-point analysis for hurricane or other
adversarial climate events. Alongside a good review of this topic, Elsner et al. (2004) discusses a
rate shift in hurricane incidence and how these are different for overall US and the southern part 95

of Florida. To perceive why synchronization could be questionable, consider a pathway of a hur-
ricane. The related climate variables will show some form of short-term abrupt change; however
these changes should pop up not together at all locations, depending on when how far are these
from the eye of hurricane and the timeline of the hurricane passing close to them. In different
areas of time series econometrics, especially those in the domain of energy and developments, 100

change-points often occur due to external events, political intervention, international relations,
etc., and these change-points have interesting spatial flavor in them. A similar flavor arises in
classical framework of Granger causality (See Granger (1969)) as it talks about correlation be-
tween two series at some lag being significant. Under this premise of Granger causality, it is easy
to perceive why these two series, observed simultaneously, might lead to similar pattern but in an 105

asynchronous fashion. See Maziarz (2015); Shojaie & Fox (2022) for excellent reviews on this
literature. Granger causality is also well studied for neuroscience Ding et al. (2006); Seth (2007);
Coben & Mohammad-Rezazadeh (2015) etc. and climate analysis, Bahadori & Liu (2011); At-
tanasio et al. (2013); McGraw & Barnes (2018) etc. Finally, in epidemiology, say for instance,
one could analyze incidence rate time series of contagious diseases in different locations. If the 110

synchronization hypothesis fails, then one could proceed to understand the progression based on
the spikes or change-points observed. A recent Bayesian work, Wang et al. (2023), states that for
time-series analysis for different spatial location assumption of shared change-point might be too
restrictive. They allow for asynchronized change-points and showed that temperature data across
different locations in California and Covid count data across all counties of Illinois indeed show 115

different breaks. We also show a couple of interesting applications in Section 5 and discuss the
implication of our findings.

We summarize our contributions in this paper as follows. First, we propose a test statistic to
test the synchronization hypothesis, which is spelt out at (1.3), and establish its validity and con-
sistency. However, even though the test statistic itself is intuitive, its null distribution does not 120
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have a closed form expression, and thus, from the perspective of practicability, this poses a chal-
lenge to actually carry this test out. To overcome this, we use a Gaussian approximation result
for multiple stationary time series with optimal rate. Although, there have been a few works on
this front, namely Liu & Lin (2009); Wu & Zhou (2011); Karmakar & Wu (2020), none of the
existing work suffices for our purpose. The best possible rates were obtained in Karmakar & Wu125

(2020) for a general non-stationary process and we adopt this to arrive at a Gaussian approxima-
tion with variance directly related to the long run covariance matrix of the error process. One final
step remain, in estimating this error (long-run) variance, and given the premise of our problem of
possible existence of possibly non-synchronized change-point, it is a non-trivial problem. To this
end, we were able to establish consistency of our proposed method of estimating this covariance,130

agnostic of both whether a particular series has a change-point or the change-points across dif-
ferent series are synchronized or not. This is, to the best of our knowledge, a novel contribution
on its own. Finally, we conclude our paper by discussing two interesting real life datasets where a
synchronization testing could yield some interesting insights. In the appendix, we provide exten-
sive simulations to thoroughly address different scenarios based on number of components with135

true change-points and whether they are synchronized or not.
We conclude the introduction with organization and some notations, to be used throughout.

1.1. Organization
In Section 2 by rigorously introducing our test statistic for the synchronization problem. We

further prove that, under a very general class of alternative settings, a test based on this test statis-140

tic will achieve full asymptotic power. Section 3 is devoted to the application of the Gaussian
approximation result to the bootstrap approximation for the null distribution of the test statistic.
In particular, we include an oracle bootstrap procedure and prove its validity. This oracle boot-
strap algorithm motivates us to estimate the long run covariance matrix Σ∞ of the stationary error
process (e8). Our estimate is shown to be consistent in an agnostic fashion, i.e. irrespective of145

the presence or absence of a change point in each dimension. Finally, all of these ideas are com-
bined to yield our final bootstrap Algorithm 3, whose validity is shown in Theorem 3. Crucially,
our bootstrap algorithm has a ‘‘hidden” first stage, where we individually test the existence of
change-point at each coordinate. This is discussed in Section 4. Finally, in Section 5, we sum-
marize our simulation studies, and provide two interesting data examples where synchronization150

of change-points translates into meaningful hypotheses in corresponding fields, and testing such
synchronization reflects statistically valid insights from the data. Details of our simulation studies
backing up our methodology and all theoretical proofs are deferred to the Appendix Sections.

1.2. Notation
For a matrix � = (08 9), define the Frobenius norm as |�| := (∑ 02

8 9
)1/2. With slight abuse of no-155

tation, when suitable, we use | · | to denote (i) absolute value of a real number, (ii) Euclidean norm
of a vector ∈ R3 for 3 ≥ 2, and, (iii) Frobenius norm of a matrix. Moreover, for a matrix �, we
let d★(�) be the largest singular value of �; further, if � is symmetric and positive semidefinite,
_min(�) will denote its lowest eigen value. For a random vector Y ∈ R3 , write Y ∈ L?, ? > 0,
if ‖Y‖? := [E( |Y|?)]1/? < ∞. Throughout the text, bGc refers to the greatest integer less than or160

equal to G. �? would refer to a constant that depends only on ?, but could take different values
on different occurrences. If two sequences {G=} and {H=} satisfy |G= | ≤ 2H= for some 2 < ∞ and
all sufficiently large =, then we write G= ® H=. If both G= ® H= and H= ® G= hold, then we write
G= � H=. We also use 0 ∧ 1 for min(0, 1).
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2. Methodology 165

We briefly discuss the motivation behind our test statistic in a very general set-up, and in sub-
sequent sections, we describe our algorithms in detail specific to our model (1.1). For X := X=1 =

{X1,X2, . . . ,X=}, X8 ∈ R3 , assume the general parametric model

X8 ∼ 5 (,8), ,8 := (_81, . . . , _8,3) ∈ R3 , 5 : R3 → R3 .

For each 1 ≤ 9 ≤ 3, we let _8 9 =

{
_!
9
, 8 ≤ =g9 ,

_'
9
, 8 > =g9 ,

with g9 ∈ [0, 1) for all 9 . Suppose the change-

points are synchronized, i.e. g1 = . . . = g3 = g. For each 9 ∈ {1, . . . , 3}, assume the practitioner
uses a data-based loss function L9 : X= ×  → R, to estimate g9 as

ĝ9 := arg max
W∈ 
L9 (X, W), (2.1)

where  ⊆ [0, 1) is some appropriate measurable set, and X is the sample space of the random
variables -8 . For the validity of our procedure, we require ĝ9

P→ g9 . The usual choices of the 170

loss function include likelihood-based methods, or more general non-parametric methods such
as CUSUM, MOSUM or methods based on U-statistics or M-statistics (see Sen (1982/83); Csörgő
& Horváth (1997); HuYsková (1996)). Since, under null we expect ĝ1 ≈ ĝ2 ≈ . . . ≈ ĝ3 , intuitively,
the expressions

∑3
9=1 maxW L9 (X, W), the max and

∑
can be (approximately) interchanged. Based

on this motivation, our test statistic reads as follows. 175

�= =

3∑
9=1

max
W
L9 (X, W) −max

W

3∑
9=1
L9 (X, W). (2.2)

Note that, �= ≥ 0 always, and as suggested above, under �0, we expect �= ≈ 0. Therefore, we
reject �0 for large values of �=.

2.1. Test statistic for model (1.1)
With (1.1) being an additive model, testing (1.3) motivates us to use loss function same as that

of the well-studied CUSUM statistic. Mathematically speaking, in (2.1) we employ 180

L9 (X, W) = |(8 9 − 8 -̄· 9 |/
√
= where 8 = b=Wc, W ∈ (0, 1), and (8 9 =

8∑
:=1

-: 9 .

Here and onwards, in (1.1) we assume X8 ∈ R3 for 1 ≤ 8 ≤ =. Therefore, for the specific model
(1.1), equation (2.2) can be rewritten as

)= := )= (X1,X2, . . . ,X=) = =−1/2 ©­«
3∑
9=1
|(=ĝ9 , 9 − =ĝ9 -̄· 9 | −

3∑
9=1
|(=ĝ, 9 − =ĝ-̄· 9 |ª®¬ , (2.3)

where,

ĝ9 :=
1
=

arg max
1≤8≤=

|(8 9 − 8 -̄· 9 |/
√
=, and ĝ :=

1
=

arg max
1≤8≤=

3∑
9=1
|(8 9 − 8 -̄· 9 |/

√
=. (2.4)

Subsequently in this paper, we will consider )= as our test statistic. 185

Remark 1. )= uses both the individual estimates ĝ9 and ĝ. When 3 = 2, one might argue that
ĝ1 − ĝ2 can be used to test synchronization, potentially performing multiple pairwise compar-
isons for a general 3 ≥ 2. Howeover, in light of cross-sectional correlation between -8 9 and -8; for
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1 ≤ 9 ≠ ; ≤ 3, the explicit joint distribution of (ĝ9)1≤ 9≤3 or (ĝ9 − ĝ)1≤ 9≤3 is not known and can be
quite technically burdensome. In particular, this technical difficulty also hinders a potential boot-190

strap procedure to test for synchronization after one has estimated the individual change-points. In
contrast, our proposal looks at an aggregated information based on all estimated change-points in-
stead of pairwise comparisons, and the subsequent application of Gaussian approximation makes
the simple yet intuitive statistic)= in (2.4) easily usable for practical purposes for any fixed 3 ≥ 2.

As explained in (2.1), it is crucial that ĝ9 is a consistent estimator of the individual change-points195

under suitable conditions. Moreover, for the validity of our test, it is also necessary that under �0,
the common change-point g is consistently estimated by ĝ. However, in order to discuss such
results, we first need to explicitly characterize the dependency structures of the error processes
(e8)8∈Z. In the following subsection, we provide a very general stationary causal set-up, which
enables us to arrive at interpretable and useful theoretical results.200

2.2. Dependence structure
To perform some meaningful analysis of our test statistic )=- in particular, to retrieve the un-

known change-points (g9)39=1 from the observed (X8)=8=1, we need to impose some dependence
structure on the process (e8). We assume the following causal representation:

e8 = � (Y8 , Y8−1, . . .) = (481, 482, . . . , 483)>, (2.5)

where � is a measurable function R∞ → R3 and Y8’s are independent and identically distributed205

random variables. We also assume that e8 ∈ L? where ? > 2. This representation is inspired from
writing the joint distribution of (X1, . . . ,X=) in terms of conditional quantile function of i.i.d.
uniform random variables. It allows us to employ the widely used idea of coupling to model the
dependence structure. In fact, we will use the framework of functional dependence measure on
the underlying process (see Wu (2005)). Suppose that (Y′

8
)8∈Z is an independent copy of (Y8)8∈Z.210

Define the functional dependence measure

\8, ? = ‖e8 − e8,{0} ‖? = ‖� (F8) − � (F8,{0})‖?, 8 ≥ 0, ? ≥ 2, (2.6)

where, for : ≤ 8, F8,{:} is the coupled version of F8 with Y: in F8 replaced by Y′
:
:

F8,{:} = (Y8 , Y8−1, . . . , Y:+1, Y
′
: , Y:−1, . . .), (2.7)

and e8,{:} = � (F8,{:}). In particular, Wu (2005) showed that for a linear process e8 =∑∞
:=0 0:Y8−: , \:, ? ≤ 2‖Y0‖? |0: |. Therefore, \:, ? measures the dependence of 4: on Y0. We fur-

ther restrict ourselves to short range dependent processes; i.e. we assume that,215

Θ0, ? =

∞∑
8=0

\8, ? < ∞. (2.8)

Processes with long-range dependency often involve approximation through a ‘‘Non-Central
Limit Theorem”(see Beutner et al. (2012); Zhou & Wu (2011)), and application of standard tools
(such as various moment and large deviation bounds Rosenthal (1970); Burkholder (1973); Na-
gaev (1979); Fuk & Nagaev (1971)) is very different, compared to weak dependent processes.
However, (2.8) is not a major restriction, since, almost all popularly used stationary processes220

(such as ARMA, ARCH, GARCH, Volterra processes, etc.) can be shown to fit into our frame-
work. Further interesting examples can be found in Chen et al. (2013); Jirak (2015); Zhou (2012),
among others. Subsequently, we discuss how we can establish the validity and consistency of our
test statistic under this framework.
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2.3. Validity and consistency of our test statistic 225

As discussed before, we start with a consistency result for our individual CUSUM estimates of
change-points, ĝ9 and a consistency result for our common change-point estimator ĝ under �0.

Proposition 1. Grant model (1.1) for (XC ) with the error process (eC ) satisfying (2.5) and
(2.8). Then, for all 1 ≤ 9 ≤ 3, |ĝ9 − g9 | = $P((=X2

9
)−1 ∧ 1). Further, if �0 : g1 = . . . = g3 := g is

true, then it also holds that |ĝ − g | = $P((=
∑3
9=1 X

2
9
)−1 ∧ 1). 230

The rate $P(1/(=X2)) has been long studied in the change-point literature, appearing at least in
Bai (1994), Bai (1997a) and Bai (1997b), as well as in recent minimax optimality results (see
Wang & Samworth (2018) and Verzelen et al. (2023)). However, to the best of our knowledge, the
literature is missing any such results in the general setting of causal stationary process satisfying
(2.5) and (2.8). The argument for Proposition 1 is standard, involving classical techniques such 235

as Hàjek-Rényi inequality. As discussed immediately after equation (2.1), Proposition 1 enables
us to argue about the validity of our test statistic )= in the asymptotic sense. The following result
summarizes this, as well as the effectiveness of )= under the alternative hypothesis �20 .

Proposition 2. Grant model (1.1) for XC with the error process eC satisfying (2.5) and (2.8).
Then under the synchronized setting, i.e. under �0 described in (1.3), )= = $P(1). On the other
hand, under �20 , i.e., if

H := {{ 91, 92} : 1 ≤ 91, 92 ≤ 3, g91 ≠ g92}

is non-empty, then )=
P→∞ if

= max
{ 91, 92}∈H

(X2
91
∧ X2

92
) → ∞. (2.9)

Remark 2. The imposed condition (2.9) can be shown to be optimal, even in a minimax sense. 240

Consider the following toy example. Suppose 3 = 2, g1 ≠ g2, and =X2
1 →∞ (say, X1 = 1), but

=X2
2 → 0 (eg., X2 = 1/=). Intuitively speaking, since X1 � X2, ĝ ≈ g1, and since ĝ1

P→ g1, there-
fore, |(=ĝ1,1 − =ĝ1 -̄·1 | ≈ |(=ĝ,1 − =ĝ-̄·1 |. On the other hand, note that since X2 is small, ĝ2 is no
longer a consistent estimate of g2. Therefore, from the null behavior of CUSUM estimate of ĝ2, as
well as the fact that ĝ is not close to g2, one can show both |(=ĝ2,2 − =ĝ2 -̄·2 | and |(=ĝ,2 − =ĝ-̄·2 | 245

are small. Therefore, )= can be shown to be$P(1) even under this alternative. Thus, the condition
(2.9) is necessary to distinguish between the null �0 and alternate �20 .

Remark 3. The Proposition 2 assumes fixed change-points g9 , 9 ∈ [3], when they exist. A mi-
nor modification of the proof can be employed to obtain a slight generalization of (2.9): In par-
ticular, let J = {ℎ1, ℎ2, . . . , ℎ | J |} be the set of unique change-points, |J | ≥ 2, with �ℎ := {1 ≤ 250

9 ≤ 3 : g9 = ℎ} denoting the coordinates with change-point at ℎ ∈ J . If the set J is ordered so
that &8 :=

∑
9∈�ℎ8

|X9 | follows &1 ≥ &2 . . . ≥ & | J | > 0. Then (2.9) can be generalized to

√
=

| J |∑
8=2

&8 |ℎ8 − ℎ8−1 | → ∞. (2.10)

In contrast to (2.9), (2.10) allows the change-point locations to vary with =. For simplicity, we
proceed with (2.9), noting that our results extend to the more general case with minor adjustments. 255

The proofs of Propositions 1 and 2 are provided in Section B. Note that, even though under the
null )= = $P(1), in general the null distribution of )= will be extremely complicated, or even
intractable. Therefore, we aim to provide a bootstrap approximation for it. In Section 3, we state a
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KMT-type Gaussian approximation result for the partial sums of the error process (4
8
, which we

then use to provide a bootstrap approximation to )=.260

3. Approximation of null distribution of )=
This section comprises of the two crucial theoretical results, that form the basis of our

bootstrap-based algorithm for testing the hypothesis of synchronization. First, in Section 3.1, we
mention a Gaussian approximation result that will be used to approximate the null distribution
of )= via bootstrap. This result involves an unknown parameter in the form of Σ∞, the long-run265

variance of (eC ), which is estimated in Section 3.2.

3.1. KMT-type Gaussian approximation
Strong invariance principles, originating as extensions of classical functional central limit the-

orems (FCLTs), is well-studied in the literature, with the case for i.i.d. random variables settled
by Komlós et al. (1975, 1976) with the optimal rate =1/? for ? > 2. For univariate stationary pro-270

cess, such optimal rate has been achieved in the seminal work by Berkes et al. (2014). Recently,
Karmakar & Wu (2020) extended this to multivariate non-stationary process, albeit without ex-
plicit regularization of variance. Following the corresponding argument in Berkes et al. (2014),
for stationary multivariate process (e8)8∈Z, the variance of the approximating Gaussian process
(�8) can be regularized to be 8Σ∞. We state the complete result here.275

Theorem 1. Suppose (e8)8∈Z has the causal representation (2.5), and satisfies (2.8) for some
? > 2. Let (4

8
=

∑8
9=1 e9 , 1 ≤ 8 ≤ =. Define the long-run variance Σ∞ =

∑
:∈Z E[e0e>

:
]. Assume it

satisfies _min(Σ∞) ≥ 2 > 0 for some positive constant 2. If we further assume

Θ8, ? = $ (8−�), with � > �0 = max

{
?2 − 4 + (? − 2)

√
?2 + 20? + 4

8?
, 1

}
, (3.1)

then, there exists a probability space (Ω2, �2, %2) on which we can define random vectors (e2
8
),280

with the partial sums (2
8
=

∑8
9=1 e2

9
, and a Gaussian process�8 with independent increments, such

that ((2
8
)=
8=1

�
= ((4

8
)=
8=1, and it holds

max
8≤=
|(28 − �8 | = >P(=1/?) where, �8 =

8∑
9=1

Z9 with (Z8)=8=1
i.i.d.∼ # (0, Σ∞). (3.2)

The above theorem also appeared in Steland (2024); Li et al. (2024). Let us discuss the impli-
cations of this result in our context. We are interested in obtaining Gaussian approximations of
functionals of the form, (C) :=

∑=
8=1 e8F8 (C),where F8 (·) : [0, 1] → R are weight functions, and285

(e8)=8=1 are mean-zero, multivariate stationary process. Such quantities occur frequently in various
methodologies of change point estimation, and also in many other applications. One can employ
our Theorem 1 to deal with , (C). A similar treatment can also be found in Wu & Zhao (2007);
Bonnerjee et al. (2024). Suppose Z1, . . . ,Z=

i.i.d.∼ # (0, Σ∞) are such that �8 =
∑8
9=1 Z8 , and let

, � (C) =
=∑
8=1

F8 (C)Z8 . (3.3)
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Here, , � (C) is the Gaussian process that we want to use to approximate , (C). Let Ω= = 290

supC∈ (0,1) {|F1(C) | +
∑=
8=2 |F8 (C) − F8−1(C) |}. Now, from Theorem 1, one obtains

sup
C∈ (0,1)

|, (C) −, � (C) | ≤ Ω= sup
1≤8≤=

|(48 − �8 | = >P(Ω==1/?). (3.4)

We can motivate an oracle bootstrap algorithm based on (3.4). By ‘‘oracle”, we emphasize that
at this stage, we assume that Σ∞ and the means -8’s are known; we simply wish to investigate the
rate of error if )= is approximated by its Gaussian analogue, as dictated by (3.3). This is done in 295

the following lemma, whose proof is provided in Section C.2.

Lemma 1. Assume (1.1). Under the assumptions of Theorem 1, on a possibly enlarged proba-
bility space, there exists independent (Z8 ∼ # (-8 , Σ∞))=8=1 such that it holds

|)= − )/= | = >P(=1/?−1/2) where )/= := )= (Z1, . . . ,Z=). (3.5)

This lemma is repeatedly used while analyzing the validity of the bootstrap algorithms proposed
subsequently. In view of Lemma 1, the aforementioned ‘‘oracle” bootstrap algorithm can be mo- 300

tivated naturally. For simplicity, assume `!
9
= 0 for 1 ≤ 9 ≤ 3. As a prelude to our complete

bootstrap algorithm in Section 4, we provide this algorithm here.

Algorithm 1. Oracle test of synchronization
1 Input: X = (X1, . . . ,X=), bootstrap size �, g ∈ (0, 1), sequence of jumps {X9}39=1,

long-run covariance Σ∞.
2 Goal: Test if g1 = . . . = g3 = g.

• Construct Test statistic )= from (2.3).
• For s= 1, . . . , �

– Generate bootstrap samples (Z(B)
8
)=
8=1

i.i.d∼ # (0, Σ∞).
– For 9 = 1, . . . , 3, - (B)

8 9
← /

(B)
8 9
+ X9 �{8/= > g}, 1 ≤ 8 ≤ = .

– Generate ) (B)= from (X(B)1 , . . . ,X(B)= ).

• Bootstrap p-value: ?0 ← 1
�+1 (

�∑
B=1

I{)= > ) (B)= } + 1).

While the Lemma 1 emphasizes the efficacy of the oracle algorithm, it is important to take note
of what more a practitioner requires in order to obtain a valid, yet completely data-based bootstrap
algorithm to test (1.3). In particular, observe that in the input of Algorithm 1, the usually unknown 305

quantities are: common change point g, the jumps {X9}39=1 and Σ∞. It will be convenient to have
a checklist of the quantities that can be readily estimated, and the quantities that are yet to be
estimated. In the following, each of statement holds under the corresponding set of assumptions
of the accompanying mathematical results.

• Under null, the common change-point ĝ is consistently estimated due to Proposition 1. 310

• The jumps X9 (and in general the means pre and post-change-point) can also be consistently
estimated under �0 as well as under �20 ; upon consistently estimating ĝ9’s (or ĝ under the
�0), we can simply consider X̂9 := ˆ̀'

9
− ˆ̀!

9
as an estimate, where ˆ̀9’s are defined in (3.6).

• Therefore, in order to have a consistent, data-based, Gaussian bootstrap algorithm, we re-
quire an estimation procedure for Σ∞. This is addressed in our next section. 315
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3.2. Estimation of Σ∞
Consider the model (1.1), and recall Σ∞ from Theorem 1 as the long-run variance matrix of

the error process (eC ). Since e8’s are not directly observed, we have to use the original observa-
tions X8’s and the estimated means pre- and post-change-point. Combining these ideas, in this
section we propose a non-parametric estimator of Σ∞, which is consistent if there is at most one320

change point (popularly referred as AMOC in the change-point literature) in each time series. In
particular, we show that our estimator is consistent agnostic to whether �0 is true or not, i.e., the
change-points do not need to be synchronized. For 1 ≤ 9 ≤ 3, recall ĝ9 from (2.4) as a CUSUM-
based estimate of true change-points g9 . For 1 ≤ 8 ≤ =, define the estimated means as,

-̂8 = ( ˆ̀8 9)39=1, where ˆ̀8 9 =

{
ˆ̀!
9

:= 1
b=ĝ9 c

∑b=ĝ9 c
8=1 -8 9 , if 8 ≤ =ĝ9 ,

ˆ̀'
9

:= 1
=−b=ĝ9 c

∑=
8=b=ĝ9 c+1 -8 9 , if 8 > =ĝ9

. (3.6)325

The lag-: autocovariance matrix is estimated as

Γ̂: :=
1
=

=−:∑
8=1
(X8 − -̂8) (X8+: − -̂8+:)>.

Let  : [−l, l] → R be a continuous kernel with  (0) = 1. Then, with a suitable choice of
bandwidth �=, our estimator of Σ∞ is:

Σ̂=,�=
:= Γ̂0 +

=−1∑
:=1

 (:/�=) (Γ̂: + Γ̂>: ). (3.7)

Notably, this is a multivariate version of a HAC estimator (see Newey & West (1987); Andrews
& Monahan (1992)). The following result yields the error rate of Σ̂=,�=

as an estimator of Σ∞.330

Theorem 2. Assume model (1.1) for X8 , with e8 satisfying (2.5) and (2.8) for some ? >

2. Moreover, let  : [−l, l] → R ,  ∈ C1 be a symmetric bounded kernel function with
 (0) = 1 and supG | ′(G) | ≤ �. Suppose ?′ = min{?, 4}. Then, for a bandwidth �= →∞ with
�==

2/?′−1 → 0, the error rate for the long-run covariance estimate Σ̂=,�=
in (3.7) can be sum-

marized as335

d★(Σ̂=,�=
− Σ∞) = $P(�==2/?′−1 + �−1

= ). (3.8)

Here the �==2/?′−1 is the consistency error, and �−1
= corresponds to bias.

Remark 4 (Agnostic nature of Theorem 2). We would like to point out that, even for those coor-
dinates 9 for which there is no change-points (i.e. X9 = 0), we pretend that there is a change-point,
estimate it and use it to estimate the left and right means ˆ̀!

9
and ˆ̀'

9
. Interestingly, this still results340

in a consistent estimate of Σ∞. This is convenient from the point of view of a practitioner, since
they usually have no way to know which coordinates have no change-point. Similar ideas also
appear in Remark 3.2 of Cho (2016), albeit in the context of studentization in a synchronized
change-point setting. As mentioned therein, HuY sková & Kirch (2010) also mentions similar
estimators in a synchronized AMOC setting with univariate random variables, with theoretical345

guarantees of consistency. The agnostic nature of such a construction in a multivariate set-up is
not underpinned in Cho (2016), where the methodological contributions therein do not presup-
pose consistency, and a weaker condition (A6) was sufficient. To the best of our knowledge, the
agnostic consistency of Σ̂=,�=

as an estimator, in an asynchronized, multivariate setting, is a new
contribution to the literature.350
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Remark 5 (Choice of the kernel function). A special class of kernel function is the Rectangular
kernel:  Rec(D) = �{|D | ≤ 1}. This is a very classical and yet popular choice of kernel and dates
back several decades in works of Bartlett (1946) and others. Note that  Rec ∉ C1. Nevertheless,
almost the entire argument of Theorem 2 goes through to yield a bias of$ (�−�= ) where we recall
� > �0 is the decay exponent of Θ8, ?. This rate is strictly better than that of (3.8). However, 355

a major disadvantage of  A42 is that it is not a positive semi-definite kernel, and therefore it
is not guaranteed that Σ̂=,�=

� 0. On the other hand, the error rate (3.8) can be improved by
assuming A > 1 continuous derivatives of  . A sweet spot, with regards to positive-definiteness
and bias reduction, is advocated through the use of Splitted Rectangular Cosine kernels, as in
Bühlmann (1996); Bühlmann & Künsch (1999) etc. This idea is also related with the infinite- 360

order flat top kernels, suggested by Politis & Romano (1995); Politis & White (2004); Politis
(2003) and many others in the context of spectral density estimation. Some other choices include
the Bartlett kernel and its convolutions. In view of such a huge literature, and in order not to divert
too much from our main topic of discussion, we choose not to delve any deeper into the theory
behind the appropriate choice of kernel function (and the corresponding bandwidth). Instead, we 365

take this issue up empirically through some simulation exercises in Section A.3.

The proof of Theorem 2 is deferred to Section C.3. A key insight into our proof is that, indifferent
to the existence of change-points and even jump-sizes, the estimated mean vector -̂8 in (3.6) will
always be close, on an average, to the original mean vector -8 . On first glance, this is not quite
obvious, since, for a fixed 1 ≤ 9 ≤ 3, some algebra shows that with probability 1,

max
1≤8≤=

| ˆ̀8 9 − `8 9 | � X9 +$P(1/
√
=),

which can be large for larger jump-sizes. However, we show that the number of indices 8 on which
this maximum occurs, decreases with increasing X9 , and therefore on an average | -̂8 − -8 | can be
proven to be small. This is quantified in the following proposition.

Proposition 3. Recall -̂8 from (3.6). Then for all 1 ≤ 9 , ; ≤ 3, and 0 ≤ : ≤ = − 1 it holds that 370

1
=

=−:∑
8=1
( ˆ̀8 9 − `8 9) ( ˆ̀8+:,; − `8+:,;) = $P(1/=), (3.9)

where we have assumed (2.5) and (2.8) for our error process (eC ), and (1.1) for (XC ).

We emphasize that, agnostic to the location of change-points and size of the jump, Proposition 3
asserts that -̂8 achieves the optimal rate of estimation. Of particular interest is the case, when the
jump is small, or zero, which we briefly discuss here. In this case, Proposition 3 can be realized
in the context of the well-known result, that when X9 = 0, ĝ9 will be approximately distributed as 375

arg maxC∈ (0,1) |B1A (C) | where B1A (C) is a standard Brownian Bridge. Therefore, with high proba-
bility, the estimated change-point will lie towards the middle of the sequence {1, . . . , =}, leading
to the optimal rate that we observe in Proposition 3.

However, the proof of Proposition 3 does not require such asymptotic results for the case when
X9 is small. In particular, when X9 = 0, our proof assumes a dummy change-point g9 ∈ (0, 1), and 380

shows that, the argument used for large X9 also works for this case. This is, of course consistent
with our notion of synchronization, where we have assumed g91 = g92 if X91 = X92 = 0. The details
of the proof can be found in the Section C.3.
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4. Bootstrap algorithm and theoretical validity
With the estimation of Σ∞ dealt with, we now move towards describing our complete bootstrap385

algorithm. In order to conveniently establish the theoretical validity of our bootstrap procedure,
we impose a condition on the jump-sizes of each dimension. SupposeV0 = {1 ≤ 9 ≤ 3 : X9 = 0},
andV1 = {1, . . . , 3} \ V0. We assume the following.

Assumption 1. The jumps X9 satisfy min9:X9 ∈V1 |X9 | � 1/
√
=.

Assumption 1 resembles the well-known ‘‘beta-min” condition. It is important to briefly discuss390

the motivation behind such an assumption. Along with Σ̂=,�=
, we aim to use ĝ, and X̂9 = ˆ̀'

9
− ˆ̀'

9

as a plug-in for g and X9 respectively, in the oracle algorithm 1. Note that, when =X2
9
→∞, it can

be shown that |X̂9 − X9 | = $P(1/
√
=). However, for X9 � 1/

√
=, the estimate X̂9 can be quite large

compared to X9 . This is primarily because, for such a small size of jump, the CUSUM estimate is
not enough accurate (cf. Proposition 1 entails a rate of only $P(1)). Therefore, it is clear that, for395

the validity of our procedure, if |X9 | is small, we should draw our bootstrap samples (/1 9 , . . . , /= 9)
while pretending that X9 = 0. On the other hand, for =X2

9
→∞, X̂9 works well enough from the

sense of optimality. Importantly, in this case, ĝ9 is very close to ĝ under �0, which ensures validity
of our bootstrap procedure.

This immediately results in a thresholded/banded procedure, where we estimate X9 only if we400

know =X2
9
→∞, and otherwise estimate X9 by zero (see Step 3 of Algorithm 3). In practice, X9’s

would not usually be known, necessitating a ‘‘regularized” bootstrap procedure, whereby we first
estimateV0 andV1. We undertake an individual level CUSUM test, and then conclude the X9 = 0
if the null hypothesis �0 9 of existence of change-point in the 9-th dimension is not rejected.
This approach essentially determines the assignment of dimensions to sets V̂0 and V̂1 based on405

X̂9 �{|X̂9 | � 1/
√
=}. It can be interpreted as a ‘‘hard-thresholding” (eg. Bühlmann & van de Geer

(2011); Wainwright (2019)) of the naive estimator X̂9 of X9 .
Therefore, as motivated above, we start off by testing for the existence of change-point for each

individual dimension. The detailed procedure for this ‘‘hidden” first step of our main algorithm,
is given in Algorithm 2. Following up, we briefly discuss the Algorithm 2 from a theoretical

Algorithm 2. Test of existence of change-point
1 Input: X1, . . . ,X=, long-run variance estimate Σ̂=,�=

.
2 Goal: For each 9 : 1, . . . , 3: Test �0 9 : X9 = 0 vs �20 9 .

• For 9 = 1, . . . , 3: construct*= 9 := *= 9 (X1, . . . ,X=) as in (4.1).
• For B = 1, . . . , �

1. For 8 = 1, . . . , =, generate bootstrap samples Z(B)
8

i.i.d∼ # (0, Σ̂=,�=
).

2. For 9 = 1, . . . , 3:* (B)
= 9
← *= 9 (Z(B)1 , . . . ,Z(B)= ).

• For 9 = 1, . . . , 3, ?9 ← 1
�+1 (

∑�
B=1 I{*= 9 ≤ *

(B)
= 9
} + 1).

410

perspective. Let us denote

*= 9 (X1, . . . ,X=) := max
1≤:≤=

|
:∑
8=1
(-8 9 − -̄· 9) |/

√
=. (4.1)
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For some U ∈ (0, 1), observe that the � Monte Carlo bootstrap samples in Algorithm 2 are used
essentially to estimate the (1 − U)-th quantile 0U, 9 (Σ̂=,�=

) such that

0U, 9 (Σ∞) := inf{0 : P(*= 9 (Z1, . . . ,Z=) > 0) ≤ U} for Z1, . . . ,Z=
i.i.d∼ # (0, Σ∞).

The following result shows rigorously that under null, the test statistic *= 9 cannot be too bigger
than 0U, 9 (Σ̂=,�=

) with high probability. 415

Proposition 4. Assume the model (1.1) and the conditions of Theorem 1 for the stationary
error process (e8). Fix U ∈ (0, 1) and 9 ∈ {1, . . . , 3}. If 2= → 0, E= → 0 are chosen to be two
deterministic positive sequence such that 22

= � E−1
= (�−1

= + �==2/?′−1), with ?′ = ? ∧ 4, then for
*= 9 as in Algorithm 2, under �0 9 for every 1 ≤ 9 ≤ 3 it holds that,

lim
=→∞

P(*= 9 ≥ 0U−E= , 9 (Σ̂=,�=
) + 2=) ≤ U, (4.2)

where Σ̂=,�=
is constructed as in (3.7), satisfying the conditions of Theorem 2. 420

Proposition 4 allows us to confidently discern the setsV0 := { 9 : =X2
9
→ 0} andV1 := { 9 : =X2

9
→

∞}. In fact, this yields that P(V̂1 ⊇ V1) → 1, and limP(V̂0 ⊇ V0) ≥ 1 − U, as =→∞. With this
premise, we now provide a complete algorithm for testing synchronization of change-points.

Algorithm 3. Testing synchronization of change-points
1 Input: - , bootstrap size �, bandwidth 1=, level U. Goal: To test �0 : g1 = . . . = g3 .

1. Construct )=, ĝ and Σ̂=,�=
based on X1, . . . ,X= as in (2.3) and (3.7) respectively.

2. Use Algorithm 2 to obtain sets V̂0 := { 9 : �0 9 was not rejected}, and
V̂1 = { 9 : �0 9 was rejected}.

3. For B = 1, . . . , �,
• Generate bootstrap samples (Z(B)

8
)=
8=1

i.i.d∼ # (0, Σ̂=,�=
).

• If 9 ∈ V̂0: - (B)
8 9
← /

(B)
8 9
+ -̄· 9 , 1 ≤ 8 ≤ =.

• If 9 ∈ V̂1:
-
(B)
8 9
← /

(B)
8 9
+ 1
=ĝ

∑=ĝ
:=1 -: 9 + ( 1

=−=ĝ
∑=
:==ĝ+1 -: 9 − 1

=ĝ

∑=ĝ
:=1 -: 9)�{8/= > ĝ},

1 ≤ 8 ≤ = .
• Calculate ) (B)= based on (X(B)

8
)=
8=1.

4. ?-value: ?0 ← 1
�+1 (

�∑
B=1

I{)= ≤ ) (B)= } + 1).

Since we have already established the validity of our Algorithm 2, it is reasonable to assume
thatV0 andV1 are known for subsequent analysis. We provide a theoretical analysis of showing 425

the efficacy of the bootstrap-based quantile of Algorithm 3. Such a result also appears in Mies &
Steland (2023), Section 4, to justify their bootstrap-based tests.

Theorem 3. For the model (1.1), grant the conditions of Theorem 1 for the error process e8 ,
and the conditions of Theorem 2 for the long-run covariance estimate Σ̂=,�=

. Further suppose
that the sets V0 and V1 are known in Step 2 of Algorithm 3, and the Assumption 1 holds for 430

all 1 ≤ 9 ≤ 3. For a general sequence of vectors (.8)=8=1 ∈ R
3 , and a symmetric positive definite

matrix Γ, let a generic Gaussian-based quantile 1U (., Γ) be defined as:

1U (., Γ) = inf{1 : P()= (_1, . . . ,_=) ≥ 1) ≤ U},
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where_ 8 := Z8 + .8 and Z8
i.i.d∼ # (0, Γ). Recall -̂8 from (3.6). Suppose {D=}, {ℎ=} are two positive

deterministic sequences such that D= → 0, ℎ= → 0, and

D2
= � ℎ−1

= (�−1
= + �==2/?′−1) + ℎ−2

= max
9∈V1

1/(=X2
9 ). (4.3)

Then, it holds that,435

lim
=→∞

P()= ≥ 1U−ℎ= ( -̃, Σ̂=,�=
) + D=) ≤ U,

for -̃8 = ( ˜̀8 9)39=1 defined as

˜̀8 9 =

{
-̄· 9 , 9 ∈ V0, 1 ≤ 8 ≤ =
1
=ĝ

∑=ĝ
:=1 -: 9 �{1 ≤ 8 ≤ =ĝ} + 1

=−=ĝ
∑=
:==ĝ+1 -: 9 �{=ĝ + 1 ≤ 8 ≤ =}, 9 ∈ V1.

It is instructive to briefly discuss the rather technical condition (4.3) in D= and ℎ=. It can be
noted that �−1

= + �==2/?′−1 ¦ =1/?′−1/2, with ?′ ∈ (2, 4] for all choices of �=. Therefore, for
the ‘‘strong signal” setting with min9∈V1 |X9 | � =−1/?′ , a choice satisfying (4.3) is D= � ℎ= �
1/log =, and �= � =1/2−1/?′ . In particular, this includes the setting where X9’s are constant. Note440

that, with this particular choice of D= and ℎ=, and for all sufficiently large =, the above restriction
on �= can be generalized to (log =)3 � �= � =1−2/?′ (log =)−3. On the other hand, for the com-
plementary setting with weaker signal strength, a choice of D= and ℎ= will crucially depend on
min9∈V1 |X9 |. If 2= := min9∈V1 |X9 | with =−1/2 � 2= � =−1/?′ , then a conservative choice is given
by D= � ℎ= � 1/log(

√
=2=) along with (log

√
=2=)3 � �= � =1−2/?′ (log

√
=2=)−3.445

With the validity of the bootstrap-based test of synchronization established, it is important to
look at the aspect of power of these tests. In the simulation studies of Section A, (a summary is
provided below), we will see that, in practice, the sizes of these tests not only achieve the level of
significance, but they also produce much power under various alternatives. In fact, the following
theorem shows that asymptotically, the power of the bootstrap-based test approaches 1 under a450

general class of alternatives. A finer, finite sample analyses of sizes and powers of these tests
would require a case-by-case treatment, and are out of the scope of this paper.

Theorem 4. Recall the notation used in Theorem 3. In addition, suppose that ĝ ∈ (2, 1 − 2)
almost surely for some 2 ∈ (0, 1/2). If (2.9) is satisfied, then lim=→∞ P()= ≥ 1U ( -̃, Σ̂=,�=

)) = 1.

The proofs of Proposition 4, Theorem 3 and Theorem 4 are provided in Section D. Our bootstrap-455

based results requires an additional restriction on ĝ. However, this condition is fairly mild, and
can be guaranteed by restricting the search space for ĝ in (2.4) to =2 ≤ 8 ≤ =(1 − 2) for some
small but fixed constant 2 > 0. Boundary removal techniques have been a common feature in
change-point literature. Andrews (1993) suggests using a restricted interval when no knowledge
of the change-point is available. The specific form [=2, =(1 − 2)] of the search space has appeared460

at least as early as Bai (1994); Antoch & HuY sková (1995) and Csörgő & Horváth (1997). The
main concern behind such restriction is that CUSUM behaves with volatility when the candidate
change-point : is very close to 0 or 1- this is also the primary technical challenge that ensures
the imposition of this restriction upon our bootstrap analysis. In the context of bootstrap, such
conditions are also present in more recent works such as Shi et al. (2022); Yu & Chen (2021)465

and Yu & Chen (2022), among others. Finally, we emphasize that this condition is only required
for theoretical validity and consistency of the bootstrap-based test; for the other general results of
this paper, this restriction is not needed.
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5. Applications: Simulation and Real Data analyses
In this section we discuss a brief summary of some simulation studies and then present two 470

interesting real-life applications.

5.1. Simulation studies (Summary)
Due to space constraints, the details of our extensive simulation exercises are relegated to Sec-

tion A and here we present a brief summary. In particular, Section A.1 explores the distribution
of )= under different synchronized settings. Here, we focus on identifying the affect of jump-sizes 475

X on the distribution of )=, and hereby proceed with a relatively simple VAR model for the sta-
tionary errors e8’s. Increasing the jump-size X compels )= to converge towards 0- a phenomena
discussed in more detail in Section A.1. Working under the same setting, in Section A.2 we move
on to numerically inspect the efficacy of our Gaussian approximation result by looking at how the
finite sample distributions of the ) (B)= ’s from the oracle bootstrap Algorithm 1 compare with the 480

null distributions of )=.
The set of simulations in Section A.3 aims to numerically showcase the effect of bandwidths

�= and choice of kernel functions  on the estimation accuracy of Σ̂=,�=
. Here we observe that

the choice of kernel does not seem to hugely affect the performance of Σ̂=,�=
, as long as the choice

of �= is restricted to b=1/4c between b=1/3c. Finally, in Section A.4, we take up two non-linear 485

and yet very popularly used models for the stationary error processes: a TAR model, and a GJR-
GARCH model. For both the models, we compute the empirical type-1 errors and powers of our
bootstrap-based Algorithm 3 under null (synchronized) and various alternative (asynchronized)
scenarios. See Tables 3, 4 and 5. These simulation studies clearly highlight that testing procedure
via Algorithm 3 maintains empirical size close to the nominal level and yet achieves high power 490

even in the ‘‘difficult” scenarios of (1) asynchronized change-points being relatively close to each
other, as well as (2) the jumps corresponding to the change-points being small.

5.2. Real data analyses
In this section, we gather interesting analyses of two real-world datasets. In the first one, we test

for synchronization of two time series in two spatial locations, recovering interesting connotations 495

behind the asynchronization. For the second dataset, we show that blindly assuming synchronized
change-points across the panel results in missing potentially interesting disturbances or shifts.

5.2.1. Onset of winter floods in Mississippi river

Change-point analysis is often employed to detect various climate-influenced or man-made
changes in hydrological data Kundzewicz & Robson (2004). With regards to flood statistics, Pet- 500

titt’s testPettitt (1979) and CUSUM-based methods have been applied in detecting change-points
in annual flood peaks in the mainland United States McCabe & Wolock (2002); Villarini et al.
(2009). However, often such an analysis is limited by an i.i.d. assumption, or an adaptation of
any particular stationary parametric model such as Log-Pearson type III England Jr et al. (2019).
Several works, such as Nittrouer et al. (2012); Idowu & Zhou (2021); Villarini et al. (2009), also 505

analyze the lower-Mississippi water levels using spatio-temporal modelling. On the other hand,
the upper Mississippi basin already suffered a record catastrophic flood Pal et al. (2020) in Dec
2018-19, causing an estimated $2 billion dollars in damages Press (2019). Thus, analyzing onset
of flood, particularly in winter, is also necessary. In particular, we would attempt to understand
how the onset dates of winter surge in water level have varied (or stayed the same) in two different 510

locations ∼ 200 miles apart. This problem can be conveniently posed in our test of synchroniza-
tion framework, where the change-points signify the flood onset at the corresponding location.
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Note that, in most of the works on spatio-temporal modeling of water-levels, usually Gaussianity
and a suitable parametric form of the covariance structure is assumed in order to incorporate the
spatial effects. On the contrary, under a mild set of assumptions, our methodologies allow us to515

draw meaningful statistical inferences about this problem, without resorting to sophisticated mod-
eling exercises involving stringent and un-testable assumptions. We will discuss more about the
potential usefulness of our results after having looked into the dataset and the statistical results.

The data is taken from USGS Water Data for the Nation. Figure 1 shows the time series plots
of the daily water discharge (in ft3 per second) from 1st September 2023 to 1st May 2024 at520

Memphis and Vicksburg, along with their individual change-points. In particular, we have 3 = 2
corresponding to the two locations, and = = 243 observations for each locations. The locations

Fig. 1: Water discharge data of Mississippi river at two different locations from Sept’23 to May’24.
The vertical red line indicates the individual change points detected by CUSUM.

on the same river obviously have spatial interaction, further justifying our bootstrap procedure
based on simultaneous Gaussian approximation of stationary multivariate processes. To perform
the test of synchronization, we use � = 5000 bootstrap samples. For covariance matrix estima-525

tion we take �= = b=1/4c. The p-value comes out to be 0.0264, which implies we reject the null
hypothesis of synchronized change-point at 5% level of significance. The conclusion of asyn-
chronized flood onset dates for Memphis and Vicksburg have important connotations for policy
planning, preparation for flooding events, and much more. In particular, Memphis saw a sudden
increase in the amount of water discharged on 13-th January of 2024, whereas this increased vol-530

ume of water reached downstream at Vicksburg only three days later, i.e. on 16-th January, 2024.
This difference can be interpreted as the additional time available for Vicksburg to prepare for a
flood event, after Memphis (around 220 miles away) has witnessed a surge in river discharge. Our
test statistically validates this difference in flood onset dates, and makes way for further detailed
research to understand how distance affect the flood onset dates in different locations.535

https://waterdata.usgs.gov/monitoring-location/07032000/
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5.2.2. Mental load of aviation pilots

In this section, we analyze the data on cardio-respiratory response of pilots, collected by Grass-
mann et al. (2016). We describe the data briefly. 61 pilots underwent four phases of increasing
mental and physical demand, whose start and end-time are indicated in parenthesis that follows

1. ‘‘Resting Baseline”(0-332s) phase of simply focusing on a cross; 540

2. ‘‘Vanilla Baseline”(333-673s) phase of a minimally demanding vigilance task;
3. ‘‘Multiple Tasks”(674-1053s) phase of performing three demanding, cognition-related ac-

tivities simultaneously, and,
4. ‘‘Recovery”(1054-1393s) phase of relaxation by watching a movie.

For more details and context, readers are referred to Grassmann et al. (2016). For each pilot, 545

there are three time series on their heart rate (HR), partial pressure of end-tidal CO2 (petCO2)
and respiratory rate (RR) respectively. We work with the dataset of a randomly selected pilot as
provided in R package kcpRS. The common change-point between ‘‘Vanilla Baseline” and ‘‘Mul-
tiple Task” can be easily spotted; it is intuitive and well-documented in Grassmann et al. (2016);
Cabrieto et al. (2017, 2022). In that light, we first focus on the change-points occurring during 550

the shift between ‘‘Resting Baseline” and ‘‘Vanilla Baseline”. We do this by analyzing these 3-
dimensional time-series for the first 500 time points (Time 1-500s). We plot this data at Figure
2. Note that, Cabrieto et al. (2022) found no change-points in variance, and only found change
in auto-correlations for specific choices of hyper-parameters while performing non-parametric
change-point detection methods. Thus, we also assume the multivariate time series to be station- 555

ary, and focus on mean-based change points. Both Cabrieto et al. (2017, 2022) assume synchro-
nized change-points for this dataset, with their common change-point estimated at exactly the
location of shift between phases-i.e, at C = 332s.

We will employ our Algorithm 3 to test synchronization at level 5%. For estimating Σ∞, we
specify �= = b=1/4c with = = 500. The corresponding ?-value for the test of synchronization is 560

0.0362. Therefore, for the early stage comprising of the first shift between the first two phases,
our test result implies asynchronized change-point. Since this finding is inconsistent with what
was assumed in literature, some follow-up analyses and explanations are in order.

Fig. 2: Time series plot for early stage (1-500s) of the pilot mental load dataset. The red, green
and blue plots indicate the series corresponding to heart rate, PET CO2, and respiratory rate re-
spectively. The white and shaded regions indicate the phases ‘‘Resting Baseline” and ‘‘Vanilla
Baseline” respectively. The black dashed lines and solid horizontal black lines indicate the esti-
mated change-points by our method and piecewise mean estimates respectively.
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There seems to be no change-point detected in the heart-rate time series. Jennings et al.
(1992) hypothesized the heart-rate to decrease during vanilla baseline. On the other hand, the565

petCO2 time series displays a change-point in between the ‘‘Resting Baseline” phase (estimated
at C = 206s), and then the mean level stays the same through the initial ‘‘Vanilla Baseline” pe-
riod. One possible explanation could be that, after the start of the experiment, the level of stress
recedes leading to decreased CO2 circulation, and intensity of the body’s metabolism improves
regulated midway through the resting phase Pokorná et al. (2010); this stays the same even through570

the ‘‘Vanilla Baseline”, the task in the second phase being only minimally demanding. The res-
piratory rate displays a clear change point near the boundary between ‘‘Resting” and ‘‘Vanilla
Baseline” phases (estimated at C = 325s). In fact, we see that consistent with our intuition, breath-
ing increases slightly in performing the vigilance task at the Vanilla Baseline stage. It is important
to note that, these follow up analyses of introspecting into individual components and the subse-575

quent findings are results of questioning the ‘popular’ assumption of synchronized changepoint
through our statistical testing procedure.

We also employ our algorithm separately to the later stage of this dataset i.e. a period that com-
prises of the shift between ‘‘Multiple Tasks” and ‘‘Recovery”. We fail to reject the null hypothesis
here, as the ?-value according to our test for this part of the data comes out at 0.1088. The com-580

mon change-point is detected exactly when the phase shift happens at C = 1053. This echoes the
assumption in Cabrieto et al. (2022). The corresponding plot for this dataset is shown in Figure
3.

Fig. 3: Time-series plot, corresponding to Figure 2, for the later stage of the pilot mental load
dataset (Time 894-1393s). The white and shaded regions in the figure indicate the phases ‘‘Mul-
tiple Tasks” and ”Recovery”.

6. Conclusion
In the literature of change-point analyses of multiple time series, it is almost unanimously as-585

sumed that all co-ordinates exhibit the change-points simultaneously at the same time-stamp.
Citing reasons and motivations why this might be too restrictive, in this paper, we propose a sta-
tistical test for this synchronization assumption. Although, we discuss only the synchronization
of mean, our methods are general enough to do similar testing for other moments such as vari-
ance, correlations, kurtosis etc. In the financial econometrics literature, volatility plays a crucial590

role, and our method could be instrumental to test whether multiple stocks/indices show similar
changes in their (possibly estimated) volatility.
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Moreover, sometimes irregularity in time series can be observed due to the errors being non-
stationary. This can be easily handled by a uniform notion of functional dependence measure and
using suitable Gaussian approximation such as Karmakar & Wu (2020); Bonnerjee et al. (2024). 595

Since this does not require any technical novelty, we decided to restrict ourselves to a stationary
case here.
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Appendix

A. Simulation results 815

Here we present detailed simulation studies justifying the theoretical excursions of Sections 2, 3 and 4.

A.1. Behavior of test statistic under �0

Proposition 2 instructs that under �0, the test statistic )= = $P (1). In this subsection, we aim to empiri-
cally investigate the distribution of)= under different type of null behavior, i.e. under g1 = . . . = g3 . For our
numerical studies, we consider 3 = 4, and look at the following five settings of synchronized change-points. 820

Let us consider some X(=) such that =X2 (=) → ∞, and denote

• Model 1: (No jumps) X1 = X2 = X3 = X4 = 0.
• Model 2: (One jump) X1 = X(=), X2 = X3 = X4 = 0.
• Model 3: (Two jumps) X1 = X2 = X(=), X3 = X4 = 0.
• Model 4: (Three jumps) X1 = X2 = X3 = X(=), X4 = 0. 825

• Model 5: (Four jumps) X1 = X2 = X3 = X4 = X(=).

We consider two values of = : 500 and 1000 For the model (1.1), let the errors (e8)8∈Z follow a Vector
Autoregressive (VAR) model of lag 1:

e8 = �e8−1 + 98 , where (98)=8=1
i.i.d.∼ # (0,�5,1

'&
). (A.1)

Here �0,:
'&

is the Rational Quadratic covariance matrix, i.e,

�0,:
'&
( 91, 92) = (1 +

| 91 − 92 |2
20:2 )−0 with 0 > 0, : > 0.

The � matrix is taken so that �8 9 = 0.3 exp(−|8 − 9 |). Since we are working under null, the common
change-point is taken to be 0.5. Finally, in order to properly investigate the effect of large jumps on )=, we 830

consider X(=) = 0.5. For each of the five models, the null distribution of )= has been empirically estimated
based on 5000 independent Monte Carlo draws, and is shown in Figure 4. Even if Proposition 2 instructs
)= = $P (1), the asymptotic distribution of )= is markedly different for each of the models. In particular,
)= is small if no dimensions have change-point. As more and more dimensions have a large enough jump,
the distribution of )= seems to become more and more spread out, until the number of dimensions with 835

change-points is no longer greater than the number of dimensions without change-points. Subsequently, as
we continue increasing the number of coordinates with large jumps, )= puts more and more mass on zero.
This behavior is, of course, natural, since if dimension 9 has a large jump, we expect ĝ9 ≈ ĝ under null, and
in turn, |(=ĝ9 , 9 − =ĝ9 -̄· 9 | ≈ |(=ĝ, 9 − =ĝ-̄· 9 |. Therefore, )= will have smaller values with increasing prob-
ability, as more and more dimensions have a significant jump. In fact, if =min9 X2

9
→∞, then following 840

(B.17), one can show )=
P→ 0 under �0. This behavior is indeed verified in Figure 4.

A.2. Performance of oracle bootstrap
This section is devoted to the efficacy of our Gaussian approximation theorem 1. Here, we look through

the lens of our oracle bootstrap algorithm 1, and will explore how well the distribution of oracle bootstrap
test statistic )/= approximates that of )=. Consider the Models 1-5 from Section A.1, and let = = 1000. For 845

each model, the distribution of)= is estimated based on 5000 iterations. Similarly, 5000 ‘‘oracle” bootstrap
samples of ) (B)= are drawn as in Algorithm 1. Figure 5 justifies the validity of the oracle bootstrap, in turn
showcasing the effectiveness of the asymptotic approximation of Theorem 1.

A.3. Choice of kernel function and bandwidth for estimation of Σ∞
In this section, we focus on the performance of Σ̂=,�=

as an estimator of long-run variance Σ∞ for 850

different choices of bandwidths �=, and also different choices of the Kernel function  ∈ C1. The long-
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Fig. 4: Distribution of )= for the five models in Section A.1 for = = 500(left) and = = 1000(right).

Fig. 5: QQ plot of )= with the oracle bootstrap samples ) (B)= for Models 1(left-most)-5(right-
most).

run covariance matrix Σ∞ for the innovations (e8) from (A.1) can be computed explicitly, and has spectral
norm d★(Σ∞) = 9.534. To estimate Σ∞, consider three popular kernel functions.

• Parzen Kernel:  1 (G) = (1 − 6|G |2 + 6|G |3)�{0 ≤ |G | ≤ 1
2 } + 2(1 − |G |)3�{ 1

2 ≤ |G | ≤ 1}.
• Tukey-Hanning Kernel:  2 (G) = 0.5(1 + cos(cG))�{|G | < 1}.855

• A split Rectangular Cosine kernel.  3 (G) = �{|G | < 0.95} + 0.5(1 + cos(20(G − 0.95)c))�{0.95 ≤
|G | ≤ 1}.

Note that  3 (G) can be viewed as smoothed version of rectangular window. On the other hand,  1 and
 2 are standard examples of C1 kernel functions Parzen (1957); Bühlmann (1996); Priestley (1981). In
the following simulation studies, we again consider the five different models, and two values of = = 500860

and 1000 as in Section A.1. For each setting, the empirical mean and SD of d★(Σ̂=,�=
− Σ∞) is estimated

via 5000 independent Monte Carlo draws. Regarding the choice of bandwidth �=, we note that for ? ≥ 4,
(3.8) is minimized for �= � =1/4. Some other popular choices include =1/3 (Bühlmann (1996), Bühlmann
& Künsch (1999)) and =1/(2A+1) for CA kernels (Politis & Romano (1995)). In light of this, we let �= vary
from b=1/5c to b=1/3c for each =. Tables 1 and 2 show that, on an average,  3 consistently achieves the865

least estimation error, in line with its reduced bias, as discussed in Remark 5. As a trade-off, it also has
slightly higher variation compared to Parzen or Tukey-Hamming kernel functions. The bandwidths from
b=1/4c to b=1/3c seem to yield better accuracy in estimation with regards to both bias and variance; the
different choices of kernel function for these bandwidths do not translate into any striking differences in
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Fig. 6: Plot of  1(G) (in blue),  2(G) (in black), and  3(G) (in red).

performance in terms of MSE. Therefore, for our subsequent simulations and real-data exercises, we work 870

with �= = b=1/4c.

Kernel �= = 3 �= = 4 �= = 5 �= = 6 �= = 7

Model 1
Parzen 3.093(0.481) 3.494(0.798) 2.686(0.328) 2.976(0.461) 2.87(0.653)

Tukey-Hanning 4.117(1.437) 3.386(0.736) 2.901(0.332) 2.591(0.271) 2.407(0.38)
Splitted Rectangular Cosine 2.425(0.461) 2.003(0.798) 1.986(0.871) 2.11(0.848) 2.276(0.832)

Model 2
Parzen 3.027(0.483) 3.429(0.802) 2.605(0.337) 2.88(0.451) 2.763(0.633)

Tukey-Hanning 4.072(1.454) 3.33(0.739) 2.833(0.334) 2.517(0.281) 2.329(0.39)
Splitted Rectangular Cosine 2.358(0.46) 1.941(0.791) 1.931(0.862) 2.049(0.851) 2.206(0.839)

Model 3
Parzen 2.984(0.488) 3.378(0.802) 2.539(0.338) 2.817(0.446) 2.697(0.619)

Tukey-Hanning 4.045(1.471) 3.293(0.748) 2.788(0.341) 2.465(0.289) 2.276(0.396)
Splitted Rectangular Cosine 2.315(0.454) 1.893(0.792) 1.89(0.868) 2.014(0.855) 2.171(0.846)

Model 4
Parzen 2.868(0.506) 3.256(0.812) 2.391(0.357) 2.645(0.442) 2.53(0.607)

Tukey-Hanning 3.97(1.507) 3.196(0.771) 2.673(0.366) 2.34(0.316) 2.146(0.421)
Splitted Rectangular Cosine 2.209(0.455) 1.8(0.781) 1.81(0.868) 1.937(0.884) 2.093(0.899)

Model 5
Parzen 2.829(0.524) 3.211(0.821) 2.335(0.369) 2.574(0.44) 2.455(0.616)

Tukey-Hanning 3.943(1.528) 3.161(0.788) 2.63(0.383) 2.291(0.331) 2.094(0.429)
Splitted Rectangular Cosine 2.167(0.463) 1.755(0.78) 1.772(0.873) 1.905(0.901) 2.063(0.93)

Table 1: Empirical mean (standard deviation) of d★(Σ̂=,�=
− Σ∞) for different choices of  and

�=. Here = = 500. Results have been rounded to three decimals.

Kernel �= = 3 �= = 4 �= = 5 �= = 6 �= = 7 �= = 8 �= = 9

Model 1
Parzen 2.811 (0.675) 3.215 (1.035) 2.178 (0.291) 2.49 (0.415) 2.188 (0.402) 2.32 (0.46) 2.3 (0.602)

Tukey-Hanning 3.954 (1.778) 3.165 (1.003) 2.616 (0.495) 2.238 (0.262) 1.986 (0.317) 1.827 (0.425) 1.734 (0.504)
Splitted Rectangular Cosine 2.111 (0.342) 1.531 (0.726) 1.417 (0.855) 1.467 (0.849) 1.566 (0.807) 1.677 (0.772) 1.791 (0.757)

Model 2
Parzen 2.794 (0.686) 3.191 (1.04) 2.141 (0.29) 2.447 (0.412) 2.14 (0.413) 2.266 (0.469) 2.242 (0.609)

Tukey-Hanning 3.943 (1.795) 3.15 (1.017) 2.596 (0.505) 2.213 (0.268) 1.957 (0.321) 1.795 (0.429) 1.699 (0.511)
Splitted Rectangular Cosine 2.094 (0.343) 1.508 (0.722) 1.396 (0.851) 1.448 (0.847) 1.547 (0.808) 1.657 (0.772) 1.767 (0.757)

Model 3
Parzen 2.746 (0.694) 3.144 (1.048) 2.079 (0.302) 2.378 (0.413) 2.065 (0.419) 2.185 (0.47) 2.165 (0.603)

Tukey-Hanning 3.914 (1.814) 3.112 (1.029) 2.549 (0.516) 2.161 (0.284) 1.902 (0.333) 1.739 (0.438) 1.643 (0.52)
Splitted Rectangular Cosine 2.049 (0.35) 1.465 (0.718) 1.357 (0.848) 1.412 (0.849) 1.517 (0.814) 1.631 (0.785) 1.74 (0.78)

Model 4
Parzen 2.706 (0.7) 3.102 (1.053) 2.025 (0.312) 2.315 (0.413) 1.999 (0.421) 2.114 (0.469) 2.101 (0.603)

Tukey-Hanning 3.887 (1.829) 3.077 (1.038) 2.508 (0.522) 2.114 (0.291) 1.852 (0.34) 1.687 (0.448) 1.591 (0.53)
Splitted Rectangular Cosine 2.007 (0.352) 1.419 (0.718) 1.321 (0.842) 1.382 (0.845) 1.489 (0.816) 1.609 (0.79) 1.727 (0.787)

Model 5
Parzen 2.678 (0.712) 3.065 (1.057) 1.967 (0.329) 2.256 (0.418) 1.938 (0.416) 2.045 (0.456) 2.017 (0.581)

Tukey-Hanning 3.872 (1.852) 3.055 (1.054) 2.478 (0.532) 2.077 (0.302) 1.81 (0.351) 1.643 (0.456) 1.547 (0.534)
Splitted Rectangular Cosine 1.982 (0.349) 1.39 (0.708) 1.297 (0.834) 1.363 (0.844) 1.466 (0.825) 1.573 (0.81) 1.676 (0.812)

Table 2: Empirical mean (standard deviation) of d★(Σ̂=,�=
− Σ∞) for different choices of  and

�=. Here = = 1000. Results have been rounded to three decimals.
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A.4. Simulation for Algorithm 3
In this section, we carry out an extensive simulation study that numerically justifies the asymptotic

validity of our bootstrap procedure as proved in Theorem 3. We consider two separate models below.

A.4.1. Threshold autoregressive models875

In this section, we consider observations from Model (1.1) with the stationary errors (e8)8∈Z following
a Threshold Auto-Regressive (TAR) process Tong (1983); Chan et al. (1985). Mathematically, borrowing
the notation of (1.1) and (1.2), we write

48 9 = −d |48−1, 9 | + Y8 9 , 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ 3, (A.2)

and 98 = (Y81, . . . , Y83) ∈ R3 are the innovations such that (98)=8=1
i.i.d.∼ # (0, 0.75�5,1

'&
). We work with 3 =

4, = = 500 and 1000, and d = 0.5 in (A.2). For each 1 ≤ 9 ≤ 3, let `!
9
= 0. Let us consider the following880

scenarios.

• Setting 1. (g1, g2, g3, g4) = (0.5, 0.5 − A1, 0.5 + A2, 0.5), where A1, A2 ∈ {0, 0.01, 0.02, . . . , 0.1}. The
jumps X9 are taken as (6/log =,−6/log =, 6/log =, 0). Note that, the null �0 corresponds to A1 =

A2 = 0. When exactly one of A1 and A2 is zero, then this setting has asynchronized change-points at
only two component series. When min{A1, A2} > 0, one finds asynchronized change-points at three885

component series.
• Setting 2. (g1, g2, g3, g4) = (0.5, 0.5 − A, 0.5, 0.5) with A = 0.01, 0.02, . . . , 0.1. The jumps are
(X1, X2, X3, X4) = (6/log =,−6/log =, 0, 0). Under the alternate, Setting 2 has asynchronized change-
points at only two component series.

For each =, we use the bandwidth �= = b=1/4c while estimating Σ∞ by Σ̂=,�=
. The bootstrap quantile890

1U ( -̃, Σ̂=,�=
) is empirically estimated based on 5000 bootstrap samples. Finally, for each particular sim-

ulation setting in each of the model, we have used 1000 independently sampled Monte Carlo draws to
empirically estimate the Type-1-error or power (at 5% level of significance) for that corresponding setting.
Figure 7 shows that, under Models 1 and 2, the distinct change-points are difficult to spot in the asynchro-
nized case.

Fig. 7: A random draw of X(= = 1000) from Setting 1 with A1 = A2 = 0 (left), and A1 = A2 = 0.1
(right).

895

A.4.2. GJR-GARCH models

Next, we also apply our bootstrap algorithm to the case when the error process (e8) follows a GJR-
GARCH(1,1) model (Glosten et al. (1993)):

48, 9 = f8, 9Y8, 9 ;f2
8, 9 = 0.01 + 0.7f2

8−1, 9 + 0.142
8−1, 9 + 0.242

8−1, 9 �{48−1, 9 ≤ 0}. (A.3)
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A2
= A1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0 0.057 0.123 0.178 0.268 0.403 0.508 0.573 0.67 0.729 0.794 0.855
0.01 0.1 0.181 0.302 0.362 0.502 0.607 0.674 0.755 0.768 0.812 0.889
0.02 0.191 0.267 0.383 0.512 0.63 0.718 0.732 0.829 0.852 0.882 0.908
0.03 0.298 0.377 0.491 0.617 0.707 0.75 0.824 0.867 0.895 0.925 0.94
0.04 0.4 0.481 0.615 0.67 0.756 0.826 0.88 0.884 0.923 0.938 0.965
0.05 0.496 0.615 0.682 0.757 0.81 0.885 0.899 0.934 0.955 0.967 0.982
0.06 0.583 0.691 0.746 0.81 0.883 0.898 0.924 0.948 0.97 0.974 0.973
0.07 0.663 0.747 0.817 0.882 0.889 0.929 0.96 0.954 0.962 0.977 0.982
0.08 0.724 0.799 0.849 0.912 0.907 0.946 0.961 0.964 0.979 0.987 0.99
0.09 0.788 0.837 0.885 0.92 0.952 0.966 0.977 0.979 0.988 0.986 0.994

500

0.1 0.814 0.863 0.913 0.943 0.95 0.969 0.975 0.982 0.989 0.995 0.993
0 0.062 0.132 0.232 0.381 0.527 0.667 0.768 0.861 0.894 0.924 0.939

0.01 0.123 0.24 0.368 0.529 0.66 0.758 0.851 0.886 0.928 0.962 0.963
0.02 0.218 0.387 0.523 0.683 0.776 0.839 0.923 0.939 0.966 0.977 0.978
0.03 0.358 0.502 0.665 0.767 0.86 0.917 0.935 0.963 0.98 0.988 0.988
0.04 0.554 0.663 0.763 0.854 0.912 0.944 0.972 0.981 0.995 0.989 0.994
0.05 0.659 0.771 0.861 0.92 0.935 0.964 0.985 0.997 0.995 0.996 0.998
0.06 0.764 0.842 0.88 0.948 0.966 0.984 0.991 0.991 0.996 1 0.998
0.07 0.824 0.894 0.929 0.959 0.98 0.981 0.995 0.998 0.996 0.999 0.999
0.08 0.877 0.925 0.946 0.977 0.99 0.994 0.998 1 0.998 1 0.999
0.09 0.908 0.956 0.963 0.979 0.989 0.992 0.997 1 0.997 1 1

1000

0.1 0.951 0.962 0.978 0.992 0.991 0.996 1 0.998 0.999 0.999 1

Table 3: Type-I error (when A1 = A2 = 0), and power of Algorithm 3 for Setting 1.

A 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
= = 500 0.093 0.111 0.141 0.186 0.219 0.302 0.322 0.355 0.411 0.489
= = 1000 0.099 0.109 0.17 0.225 0.287 0.382 0.422 0.512 0.598 0.672

Table 4: Power of Algorithm 3 for Setting 2.

As in Section A.4.1, we work with innovations (98)=8=1
i.i.d.∼ # (0, 0.75�5,1

'&
). We let 3 = 4, `!

9
= 0 for all

1 ≤ 9 ≤ 3, and for each particular setting, consider = = 500 and = = 1000. We focus on the following 900

model.

• Setting 3. (g1, g2, g3, g4) = (0.5, 0.5 − A1, 0.5 + A2, 0.5), where A1, A2 ∈ {0, 0.01, . . . , 0.1}. The
jumps are (X1, X2, X3, X4) = (1/(log =), 1/(log =),−1/(log =), 0).

For each particular setting, we compute the empirical type-1-error and power via exactly the same mech-
anism as described in Section A.4.1. Tables 3, 4, and 5 show the empirical type-1 error and powers of 905

the models in Sections A.4.1 and A.4.2. The simulation results are as expected, based on the theory of
the preceding sections. In particular, in Tables 3 and 5, as the sample size = increases from 500 to 1000,
the empirical type-1 error stabilizes to around 5% for both TAR and GJR-GARCH errors. This justifies
the asymptotic result of Theorem 3. Obviously, the empirical powers under different alternative settings
increase with increasing =. Moreover, Table 4, and the entries corresponding to A1 = 0 or A2 = 0 in Table 910

3 show that, the power is comparatively lesser when there are only two distinct change-points under the
alternative; the other columns and rows in Table 3 correspond to three distinct change-points, and in con-
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Fig. 8: A random draw of X(= = 1000) from Setting 3 with A1 = A2 = 0 (left), and A1 = A2 = 0.1
(right).

A2
= A1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0 0.083 0.102 0.112 0.169 0.257 0.326 0.419 0.515 0.54 0.628 0.692
0.01 0.083 0.114 0.174 0.248 0.329 0.41 0.474 0.563 0.619 0.669 0.715
0.02 0.133 0.184 0.234 0.32 0.383 0.477 0.566 0.628 0.685 0.704 0.76
0.03 0.177 0.256 0.322 0.385 0.487 0.548 0.617 0.686 0.749 0.775 0.826
0.04 0.254 0.327 0.399 0.498 0.554 0.617 0.673 0.732 0.797 0.829 0.847
0.05 0.339 0.39 0.502 0.554 0.626 0.69 0.755 0.777 0.811 0.851 0.867
0.06 0.414 0.483 0.542 0.616 0.65 0.762 0.796 0.82 0.84 0.868 0.886
0.07 0.519 0.532 0.623 0.688 0.728 0.777 0.841 0.851 0.895 0.916 0.912
0.08 0.561 0.618 0.665 0.741 0.763 0.825 0.852 0.887 0.898 0.915 0.935
0.09 0.618 0.636 0.723 0.788 0.811 0.842 0.869 0.893 0.905 0.93 0.942

500

0.1 0.676 0.736 0.75 0.799 0.845 0.857 0.898 0.91 0.934 0.932 0.961
0 0.06 0.088 0.164 0.272 0.366 0.515 0.592 0.679 0.751 0.809 0.834

0.01 0.1 0.172 0.226 0.347 0.47 0.559 0.675 0.738 0.815 0.863 0.892
0.02 0.169 0.249 0.367 0.47 0.571 0.651 0.763 0.813 0.853 0.895 0.904
0.03 0.268 0.377 0.413 0.565 0.673 0.761 0.803 0.856 0.909 0.929 0.944
0.04 0.375 0.484 0.587 0.661 0.758 0.817 0.861 0.885 0.923 0.944 0.964
0.05 0.475 0.56 0.69 0.728 0.83 0.859 0.912 0.93 0.953 0.961 0.98
0.06 0.587 0.665 0.719 0.806 0.858 0.91 0.923 0.949 0.95 0.972 0.98
0.07 0.669 0.726 0.794 0.878 0.885 0.943 0.948 0.963 0.974 0.982 0.982
0.08 0.742 0.822 0.85 0.889 0.93 0.937 0.972 0.979 0.979 0.985 0.983
0.09 0.787 0.868 0.873 0.934 0.939 0.953 0.966 0.982 0.981 0.995 0.991

1000

0.1 0.83 0.894 0.907 0.918 0.95 0.964 0.977 0.987 0.987 0.99 0.993

Table 5: Type-1 error (A1 = A2 = 0) and Power of Algorithm 3 for Setting 3.

junction, to an increased power. This is corroborated by the proof of Proposition 2, where, with an increase
in the number of distinct g9 ’s with jumps X9 � 1/

√
=, )=

P→∞ faster. Interestingly, in Table 5, even for the
conditionally heteroscadastic set-ups such as GARCH, our Gaussian bootstrap-based test performs really915

well, and achieves around 80% power for = = 1000 when the two distinct change-points are separated by
only 0.09. These results augur well for the performance and robustness of Algorithm 3 in real-life scenar-
ios; in particular, based on our theoretical excursion and extensive simulation studies, we expect the test to
remain valid and yield considerable power in very general settings.
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B. Proofs of Section 2: Behavior of test statistic 920

In this section, our main aim is to prove Propositions 1 and 2. Proposition 1 plays a crucial role in
guaranteeing that our test statistic has a small value under the null of synchronization, thereby leading to
the statement of Proposition 2. In fact, Proposition 2 characterize both the validity and consistency of our
test statistic.

The main technical tool we require in order to analyze the behavior of CUSUM statistic under various 925

scenarios, is a variation of the well-known Hàjek-Rényi type inequality (Hájek & Rényi (1955)). In the
context of time series, Bai (1994) proved such inequalities for linear stochastic processes of the form of -8 =∑∞
9=0 09Y8− 9 . It has since been extended further for more general processes, for example in Theorem 1 of

Lavielle & Moulines (2000) and Theorem 4.1 of Kokoszka & Leipus (2000). For the sake of completeness,
we provide a version of Hàjek-Rényi inequality for processes satisfying (2.5) along with a simple proof. 930

We also use a well-known Rosenthal-type inequality controlling the maximum of block sums of stationary
processes. To state both the results in a general setting, we invoke the univariate stationary process {.8}8∈Z.
In particular, let .8 ∈ R have the causal representation .8 = 6(Y8 , Y8−1, . . .) for i.i.d. innovations Y8’s, and
a measurable function 6 : R∞ → R. Further suppose (.8)8∈Z satisfy (2.8), where \8, ?’s are defined as in
(2.6) with .8’s. Now we are ready to state the results discussed above. 935

Lemma 2 (Theorem 2.(i) of Wu (2005)). Consider stationary processes (.8)8∈Z with E(.8) = 0, satisfy-
ing (2.5) and (2.8) for some ? ≥ 2. Then, for 1 ≤ < ≤ =, it holds that

max
0
‖ max

1≤:≤<
|.0+1 + . . . + .0+: |‖? ≤

?√
? − 1

<1/2Θ0, ? . (B.1)

Lemma 3 (A Hàjek-Rényi-type inequality). Under the assumptions of Lemma 2, we have

P

(
max

0≤:≤<

1
= − :

���� =∑
8=:+1

.8

���� ≥ U) ≤ �?Θ
2
0, ?

U2 (= − <)
for < ≤ = − 2, (B.2)

where �? denotes a constant depending only on ?.

Proof of Lemma 3. Let !0 := blog2 (= − <)c ≥ 0, and !1 := blog2 =c. Therefore, using Lemma 2 and 940

Markov’s inequality

P

(
max

1≤:≤<

1
= − :

���� =∑
8=:+1

.8

���� ≥ U) ≤ !1∑
;=!0

P

(
max

(=−2;+1 )∨0≤:≤(=−2; )∧<

1
= − :

���� =∑
8=:+1

.8

���� ≥ U)
≤

!1∑
;=!0

P

(
max

(=−2;+1 )∨0≤:≤(=−2; )∧<

���� =∑
8=:+1

.8

���� ≥ U(2; ∧ (= − <)))
≤

!1∑
;=!0

�?

Θ2
0, ?

U22;−1 ®
�?Θ

2
0, ?

U22!0
≤

�?Θ
2
0, ?

U2 (= − <)
,

which completes the proof. � 945

The Hàjek-Rényi type inequality enables us to tackle the behavior of sample mean to the left and right
of the estimated change-point. The use of Lemma 3 underpins much of the probabilistic arguments in the
proof of Propositions 1 and 2, which are provided below sequentially.

Proof of Proposition 1. We will first show that |ĝ9 − g9 | = $P ((=X2
9
)−1 ∧ 1) for each 1 ≤ 9 ≤ 3. Fix 1 ≤

9 ≤ 3 and Y > 0. Let �Y > 1 denote a large enough constant depending on Y, whose choice will be made 950

explicitly clear in the appropriate part of our argument. Moreover, let "Y be another large constant such
that P( |ĝ9 − g9 | > "Y/(=X2

9
)) ≤ Y. Our argument will necessarily hinge on finding an appropriate "Y . Note

that, if =X2
9
≤ �Y , then the conclusion follows trivially by choosing "Y ≥ �Y . Henceforth, it is assumed

that =X2
9
> �Y . Let :̂9 = =ĝ9 , and :0, 9 = b=g9c. Clearly, = − :0, 9 � =(1 − g9 ). Observe that :̂9 can be written
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as arg max1≤8≤= |+-8, 9 |, where955

+-8, 9 = (8 9 − 8 -̄· 9 . (B.3)

Further, let +4
8, 9

:= (4
8 9
− 84̄· 9 . A crucial observation for our subsequent arguments is that,

+-8, 9 − E[+-8, 9 ] = +48, 9 , with E[+-8, 9 ] =
{
−8(1 − :0, 9

=
)X9 , 8/= ≤ g9 ,

− :0, 9
=
(= − 8)X9 , 8/= > g9 ,

for all 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ 3. (B.4)

Let ^· 9 denote the vector (-1 9 , . . . , -= 9 )> for 1 ≤ 9 ≤ 3. Since (+-
8, 9
)=
8=1 are invariant with respect to `!

9
,

hence without loss of generality, we can let `!
9
= 0 for 1 ≤ 9 ≤ 3. Further, without loss of generality,

assume that X9 > 0 (otherwise consider −^· 9 ). Observe that for all sufficiently large =,960

P

(
|ĝ9 − g9 | >

"Y

=X2
9

)
≤ P

(
max

:: |:−:0, 9 |>"Y/X2
9

|+-:, 9 | ≥ |+
-
:0, 9 , 9
|
)

≤ P

(
max

:: |:−:0, 9 |>"Y/X2
9

+-:, 9 ++
-
:0, 9 , 9

≥ 0

)
+ P

(
max

:: |:−:0, 9 |>"Y/X2
9

+-:, 9 −+
-
:0, 9 , 9

≤ 0

)
:= %1 + %2. (B.5)

Now, for the first term, suppose :1 := arg max:: |:−:0, 9 |>"Y/X2
9
+-
:, 9
++-

:0, 9 , 9
. Consider the following se-

quence of implications965

+-:1 , 9
++-:0, 9 , 9

≥ 0

=⇒ (+-:1 , 9
− E[+-:1 , 9

]) + (+-:0, 9 , 9
− E[+-:0, 9 , 9

]) ≥ −(E[+-:1 , 9
] + E[+-:0, 9 , 9

])

=⇒ 2 max
1≤:≤=

|+-:, 9 − E[+
-
:, 9 ] | ≥ −E[+

-
:0, 9 , 9
], (as E[+-:1 , 9

] < 0 for X9 > 0)

=⇒ 2 max
1≤8≤=

|+48, 9 | ≥ −E[+-:0, 9 , 9
] = :0, 9 (1 − :0, 9/=)X9 .

Therefore, in view of these assertions and applying Lemma 2 and Markov’s inequality, one obtains for970

sufficiently large =,

%1 ≤ �?
=Θ2

0, ?

:2
0, 9 (1 − :0, 9/=)2X2

9

≤ �?
Θ2

0, ?

g2
9
(1 − g9 )2=X2

9

<
�?Θ

2
0, ?

g2
9
(1 − g9 )2�Y

< Y,

where the last inequality can be guaranteed by choosing �Y large enough. On the other hand, for %2,
suppose :2 := arg max:: |:−:0, 9 |>"Y/X2

9
+-
:, 9
−+-

:0, 9 , 9
. Again, note the following sequence of implications:

+-:2 , 9
−+-:0, 9 , 9

≤ 0

=⇒ (+-:2 , 9
− E[+-:2 , 9

]) − (+-:0, 9 , 9
− E[+-:0, 9 , 9

]) ≤ −(E[+-:2 , 9
] − E[+-:0, 9 , 9

])975

=⇒ |(4:0, 9 9
− (4:2 9

− (:0, 9 − :2)4̄· 9 | ≥
{
(:0, 9 − :2) (1 − :0, 9/=)X9 , :2 ≤ :0, 9 ,

(:2 − :0, 9 ) (:0, 9/=)X9 , :2 > :0, 9

=⇒ max
:: |:−:0, 9 |>"Y/X2

9

���� 1
:0, 9 − :

(+4:0, 9 , 9
−+4:, 9 )

���� ≥ min{:0, 9/=, 1 − :0, 9/=}X9 .

By virtue of Lemmas 2 and 3, and in view of |ĝ9 − g9 | > "Y/(=X2
9
), from the above implications we obtain

%2 ≤
�?Θ

2
0, ?

min{g2
9
, (1 − g9 )2}"Y

< Y,
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where, as in the case for %1, the last inequality is guaranteed by a choice of large enough "Y . Combining
the analysis of %1 and %2, from (B.5) we obtain the conclusion. 980

Next we prove consistency of the ĝ under the null of synchronization. Let :̃ = b=gc. As :̃/= � g, for ease
of exposition and to avoid cumbersome notation, we assume :̃ = =g ∈ N. Recall ^· 9 = (-1, 9 , . . . , -=, 9 )>,
9-th component of the time series. Observe that, for any set � ⊆ {1, 2, . . . , 3}, replacing ^· 9 by−^· 9 for all
9 ∈ � does not change ĝ. Therefore, without loss of generality, we assume that X1 ≥ . . . ≥ X3 ≥ 0. Given
Y > 0, we aim to find a large enough !Y such that P( |ĝ − g | > !Y/(=X2

1)) < Y for all sufficiently large =. Fix 985

a constant �Y > 1, whose value will be specified later. If =X2
1 ≤ �Y , then the conclusion follows trivially by

choosing !Y ≥ �Y . Henceforth it is assumed that =X2
1 > �Y . As we go along in our proof, we will indicate

the choices to be made for !Y and �Y .
We are interested in the following probability:

P( |ĝ − g | > !Y/(=X2
1)) ≤ P ©­« max

8: |8− :̃ |>!Y/X2
1

3∑
9=1
|+-8, 9 | >

3∑
9=1
|+-
:̃, 9
|ª®¬ . (B.6) 990

We will bound (B.6) with a similar, but much more general argument compared to the first part of the
proposition. In particular, the presence of

∑3
9=1 on both sides of the inequality of the event

X :=
3∑
9=1
|+-8, 9 | >

3∑
9=1
|+-
:̃, 9
|,

necessitates the introduction of some notations. Let :3 := arg max8: |8− :̃ |>!Y/X2
1

∑3
9=1 |+-8, 9 |. Define the ran-

dom variables

U9 := �{+-:3 , 9
≥ 0} − �{+-:3 , 9

< 0} ; V9 := �{+-
:̃, 9
≥ 0} − �{+-

:̃, 9
< 0}. (B.7) 995

Obviously both U9 , V9 ∈ {−1, 1} for 1 ≤ 9 ≤ 3. Suppose 1 ≤ 9★ ≤ 3 be such that X9★ ≥ X1/3 > X9★+1. In
particular, 9★ = 3 if X3 ≥ X1/3. Write (B.6) as

P(X) = P(X, ∃ 90 ≤ 9★ such that U90 = 1︸                                 ︷︷                                 ︸
X1

) + P(X, U1 = . . . = U9★ = −1︸                        ︷︷                        ︸
X2

) := P(X1) + P(X2). (B.8)

We tackle the two terms P(X1) and P(X2) in (B.8) one-by-one. For a fixed 1 ≤ 8 ≤ =, define the function
5=, 9 (8) = E[+-

8, 9
]. Further, for 1 ≤ 9 ≤ 3, let us denote �9 := +4

:3 , 9
, �9 := − 5=, 9 (:3), �9 := +4

:̃, 9
, and �9 :=

− 5=, 9 ( :̃). From (B.4) and X1 ≥ . . . ≥ X3 ≥ 0, it follows 1000

�1 ≥ . . . ≥ �3 ≥ 0, �1 ≥ . . . ≥ �3 ≥ 0, and �9 ≥ W�9 for all 1 ≤ 9 ≤ 3 and W ∈ {−1, 1}. (B.9)

Moreover, (B.4) instructs +-
:3 , 9

= �9 − �9 , and +:̃, 9 = �9 − �9 . We will leverage (B.9) to make P(X1) and
P(X2) amenable to Lemmas 2 and 3. To begin with, observe that X can be written as

3∑
9=1

U9 (�9 − �9 ) −
3∑
9=1

V9 (�9 − �9 ) > 0. (B.10)

For P(X1), we note that, (B.10) implies, 1005

X1 =⇒
3∑
9=1
(U9�9 + �9 ) >

3∑
9=1
(�9 + U9�9 ) = �90 + �90 +

∑
9≠ 90

(�9 + U9�9 ) > �9★ ≥ =g(1 − g)X1/3,

(B.11)
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where the first implication is due to
∑3
9=1 V9 (�9 − �9 ) >

∑3
9=1 (�9 − �9 ), the second inequality follows from

(B.9), and the final inequality holds by definition of 9★ and �9 . Noting that
3∑
9=1
(U9�9 + �9 ) ≤ 23 max

1≤ 9≤3
max

1≤8≤=
|+48 9 |,

from (B.11), we finally have

X1 =⇒ max
1≤ 9≤3

max
1≤8≤=

|+48 9 | > =X1�3 ,

where �3 = g(1 − g)/(232). Applying Lemma 2 and Markov’s inequality, for a constant �?,3 depending
on ? and 3 we obtain

P(X1) ≤ �?,3
Θ2

0, ?

=X2
1
≤ �?,3

Θ2
0, ?

�Y
< Y, (B.12)

where the final inequality is guaranteed by choosing X1 large enough.1010

Now we focus on tackling P(X2). Let us define the random sets A := {1 ≤ 9 ≤ 3 : V9 = 1}, and B :=
{1 ≤ 9 ≤ 3 : U9 = −1}. Observe that

3∑
9=1

V9 (�9 − �9 ) =
∑
9∈A
(�9 − �9 ) −

∑
9∉A
(�9 − �9 )

≥ −
∑

9∈A∩B
(�9 − �9 ) +

∑
9∈A∩B2

(�9 − �9 ) −
∑

9∈A2∩B
(�9 − �9 ) +

∑
9∈A2∩B2

(�9 − �9 )

= −
∑
9∈B
(�9 − �9 ) +

∑
9∈B2

(�9 − �9 ),1015

where for the inequality we have used �9 − �9 ≥ 0 for 9 ∈ A, and �9 − �9 < 0 for 9 ∈ A2. Therefore,
from (B.10) one obtains

−
∑
9∈B
(�9 − �9 ) +

∑
9∈B2

(�9 − �9 ) +
∑
9∈B
(�9 − �9 ) −

∑
9∈B2

(�9 − �9 ) > 0

=⇒
∑
9∈B
(−�9 + �9 ) +

∑
9∈B2

(�9 − �9 ) >
∑
9∈B
(�9 − �9 ) −

∑
9∈B2

(�9 − �9 )

≥
{
(1 − g) ( :̃ − :3) (

∑
9∈B X9 −

∑
9∈B2 X9 ), :3 ≤ :,

g(:3 − :̃) (
∑
9∈B X9 −

∑
9∈B2 X9 ), :3 > :.

(B.13)1020

Now, for P(X2), note that since U1 = . . . = U9★ = −1, therefore {1, . . . , 9★} ⊆ B. Moreover, by definition
of 9★,

∑3
9= 9★+1 X9 ≤ (1 − 9★/3)X1, and hence,∑

9∈B
X9 −

∑
9∈B2

X9 ≥
9★∑
9=1

X9 −
3∑

9= 9★+1
X9 ≥

9★

3
X1 + . . . + X9★ ≥

X1
3
.

In view of this, (B.13) entails

X2 =⇒ max
:: |:− :̃ |>!Y/X2

1

∑3
9=1 |+4:, 9 −+

4

:̃, 9
|

|: − :̃ |
≥ X1
3

min{g, 1 − g}.

Therefore, using Lemma 3 and |: − :̃ | > !Y/X2
1, we have1025

P(X2) ≤ �?,3
Θ2

0, ?

min{g2, (1 − g)2}!Y
< Y, (B.14)



Synchronization in multiple time series 11

where the last inequality is guaranteed by choosing large enough !Y . The proof is complete in light of
(B.12) and (B.14). �

Now we proceed towards the proof of Proposition 2.

Proof of Proposition 2. Write )= =
∑3
9=1 ( |+-=ĝ9 , 9 | − |+

-
=ĝ, 9
|)/
√
=. We tackle the validity and consistency 1030

of our test separately.

B.1. Behavior under �0: Validity
For each 1 ≤ 9 ≤ 3, we will show that |+-

=ĝ9 , 9
| − |+-

=ĝ, 9
| = $P (

√
=). Henceforth in this subsection, we

will fix 9 . In light of (B.4) and 3 being fixed, we have

| |+-=ĝ9 , 9 | − |+
-
=ĝ, 9 | | ≤ (|+

4
=ĝ9 , 9
| + |+4=ĝ, 9 |) + | 5=, 9 (=ĝ9 ) − 5=, 9 (=ĝ) |. (B.15)

Lemma 2 instructs that 1035

‖ max
1≤8≤=

+48, 9 ‖? = $ (
√
=Θ0, ?), (B.16)

which takes care of the first term in the RHS of (B.15). The second term is tackled as follows. Recall
the convention that change-points are synchronized for dimensions with X9 = 0. If g1 = . . . = g3 = g, then
Proposition 1 implies that |ĝ9 − ĝ | = $P (min{1/(=X2

9
), 1}). Following (B.4), this assertion further yields

that 1040����| 5=, 9 (=ĝ9 ) | − | 5=, 9 (=ĝ) |���� ≤ 2(g ∨ (1 − g))=|X9 |$P (
1

1 ∨ =X2
9

) = $P (
√
= ∧ |X9 |−1). (B.17)

This completes the proof of validity under �0 in light of (B.15) and (B.16).

B.2. Behavior under �20 : Consistency
RecallH from the statement of Proposition 2, and in view of (2.9), consider 91, 92 such that =X2

9
→∞

for 9 ∈ { 91, 92}. Observe that for all 1 ≤ 9 ≤ 3, |+-
=ĝ9 , 9
| ≥ |+-

=ĝ, 9
|. Therefore, from (B.4) it is enough to

show that 1045

=−1/2
∑

9∈{ 91 , 92 }
( |+4=ĝ9 , 9 + 5=, 9 (=ĝ9 ) | − |+

4
=ĝ, 9 + 5=, 9 (=ĝ) |)

P→∞. (B.18)

Note that, (B.16) implies that |=−1/2+4
=ĝ9 , 9
| = $P (1), and |=−1/2+4

=ĝ, 9
| = $P (1). Therefore, we focus on

characterizing how far off 5=, 9 (=ĝ) can be from 5=, 9 (=ĝ9 ). Note that | 5=, 9 (=g9 ) | ≥ | 5=, 9 (=ĝ) | always. More-
over, for 9 ∈ { 91, 92}, it holds always that

| 5=, 9 (=g9 ) | − | 5=, 9 (=ĝ) |/
√
= ≥
√
=|X9 |C9 |g9 − ĝ |, (B.19)

where C9 := min{g9 (1 − g9 ), (1 − g9 )g9 }. Therefore, from (B.19) it follows almost surely 1050

=−1/2
∑

9∈{ 91 , 92 }
( | 5=, 9 (=g9 ) | − | 5=, 9 (=ĝ) |) ≥

√
=

∑
9∈{ 91 , 92 }

|X9 |C9 |g9 − ĝ |

≥ C
√
= min
9∈{ 91 , 92 }

C|X9 | → ∞, (B.20)

where C := min{|g91 − g92 | : { 91, 92} ∈ H , =(X2
91
∧ X2

92
) → ∞} > 0 is a constant, and the limiting asser-

tion follows from (2.9). Moreover, noting that an argument similar to (B.17) along with |ĝ9 − g9 | =
$P ((=X2

9
)−1 ∧ 1), we have 1055

=−1/2
∑

9∈{ 91 , 92 }
( | 5=, 9 (=ĝ9 ) | − | 5=, 9 (=g9 ) |) = $P (1). (B.21)
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From (B.20), along with (B.21), we obtain

=−1/2
∑

9∈{ 91 , 92 }
( | 5=, 9 (=ĝ9 ) | − | 5=, 9 (=ĝ) |)

P→∞, (B.22)

which completes the proof of (B.18). �

C. Proofs of Section 3
This section is devoted to the proofs of the results appearing in Section 3.1060

C.1. Proof of Theorem 1
The proof of this theorem is similar to Berkes et al. (2014), Karmakar & Wu (2020) and Bonnerjee

et al. (2024). While Berkes et al. (2014) deals with univariate data, there is a technical challenge to extend
these to multivariate scenario. A later work Karmakar & Wu (2020) achieves that. However, they work on
a non-stationary set-up leaving an opportunity to streamline the proof and relax some conditions therein.1065

Another recent work Bonnerjee et al. (2024) on univariate non-stationary processes relaxes some of the
conditions for the non-stationary processes. Since we are re-purposing the proof, we will be using some
technical results from Bonnerjee et al. (2024) and avoid unnecessary technical details. For better read, we
divide the proof in the following two stages.

• In Section C.1.1, we first obtain an optimal (rate-wise) Gaussian approximation that might not be1070

regularized and granular as �8 =
∑8
9=1 /9 with each /9 having iid multivariate normal distribution.

However, it maintains the same optimal rate =1/? matching the final rate at (3.2).
• Then in Section C.1.2, we regularize the approximating Gaussian process in the correct granular

structure while keeping the optimal rate intact.

These main steps are similar to the 6 steps outlined in Section 2.6 of Bonnerjee et al. (2024) towards the1075

proof of Theorem 2.5 therein. We remind the readers thar we use |G | to denote the Euclidean norm of
G ∈ R3 for 3 ≥ 1.

Proof of Theorem 1.

C.1.1. Possibly unregularized Gaussian Approximation

Recall �0 from (3.1). With � > �0, we invoke the following equations from Bonnerjee et al. (2024).1080

! =
51 − 52 + �

√
(? − 2) ( 53 − 3?)
� 54

, (C.1)

W =
(2? + ?2)� + ?2 + 3? + 2 +

√
55

2 + 2? + 4�
,

with 51 (?, �) = �?2 (� + 1), 52 (?, �) = �(2?� + 3? − 2), 53 (?, �) = ?3 (1 + �)2 + 6 51 + 4?� − 2,
54 (?, �) = 2?(2?�2 + 3?� + ? − 2) and 55 (?, �) = ?2 (?2 + 4? − 12)�2 + 2?(?3 + ?2 − 4? − 4)� +
(?2 − ? − 2)2. Our choice of ! and W satisfies the following relations:1085

1
2
− 1
?
− !� < 0, (C.2)

!

(W
2
− 1

)
+ 1 − W

?
< 0, (C.3)

? < W < 2(1 + ? + ?�)/3, (C.4)
1/? − 1/W + ! − ! (� + 1)?/W = 0. (C.5)
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For F ∈ R3 , define the truncation operator )1 (F) = ()1 (F1), )1 (F2), · · · , )1 (F3)) where )1 (G) = 1090

max{min{G, 1},−1}. The following series of results, versions of analogous results in Karmakar & Wu
(2020); Bonnerjee et al. (2024), are instrumental towards our argument.

Lemma 4 (Lemma 7.1 of Karmakar & Wu (2020)). For the truncated process, it holds that

E( |)=1/? (e8) |W) = >(=W/?−1).

Proposition 5 (Lemma 7.3 of Karmakar & Wu (2020)). Assume 3.1, along with (C.2), (C.3), (C.4)
and (C.5) for �, ! and W. Let < = b=!c and let 1095

'̃B,C = ẽB + · · · + ẽB+C ,

where -̃8 is as defined in (C.9). Then

max
B

E
[

max
1≤C≤<

|'̃B,C |W
]
= $ (<W/2). (C.6)

Lemma 5 (Lemma 9.1 of Bonnerjee et al. (2024)). Under the assumption of Theorem 1,

min
;≥1
{Θ;, ? + ;=2/?−1} = >

(
=1/?−1/2√
log log =

)
. (C.7)

Define the truncated partial sum process {(⊕
8
}=
8=1 as (⊕

8
:=

∑8
9=1

(
e⊕
8
− E(e⊕

8
)
)
. From the stationary causal

representation (2.5), it is easy to observe that 1100

max
1≤8≤=

|(48 − (⊕8 | = >P (=
1/?). (C.8)

We further define an <-dependent process (ẽ8)=8=1 as

ẽ8 = E(ẽ⊕8 |Y9 , · · · , Y9−<) − E(ẽ8). (C.9)

Let (̃8 =
∑8
9=1 ẽ9 . Using Lemma A1 of Liu & Lin (2009) and (C.2), we have

‖ max
1≤8≤=

|(⊕8 − (̃8 |‖? ≤ 2?=
1/2Θ1+<,? = >(=1/?), (C.10)

which implies max1≤8≤= |(⊕8 − (̃8 | = >P (=1/?). Let @= � =/< and ;8 = b @83 c. Denote

 = d@=
3
e, �̃: =

:<∧=∑
9=(:−1)<+1

ẽ9 for 1 ≤ : ≤ @=. (C.11)

For the blocking approximation we will approximate the partial sum process (̃8 by (�
8
=

∑;8
;=1 (�̃3;−2 + 1105

�̃3;−1 + �̃3;). Let (̃:,; =
∑;
9=:+1 ẽ9 . Following an argument exactly same as Proposition 8.3 of Bonnerjee

et al. (2024), one obtains

max
1≤8≤=

|(̃8 − (�8 | = >P (=1/?). (C.12)

Denote by a the sequence (· · · , a0, a3, · · · ) with a3: = (0 (3:−1)<+1, · · · , 03:<). Let ( = (· · · , (0, (3, · · · ),
where (: = (Y (:−1)<+1, · · · , Y:<). Let 6 be a measurable function such that ẽ8 = 6(Y8−<, · · · , Y8). For 1110

1 ≤ : ≤  , define the random functions,

�̃3:−2 (a3:−3) =
(3:−2)<∑

8=(3:−3)<+1
6(08−<, · · · , 0 (3:−3)<, Y (3:−3)<+1, · · · , Y8),

�̃3:−1 =

(3:−1)<∑
8=(3:−2)<+1

6(Y8−<, · · · , Y (3:−2)<, · · · , Y8),
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�̃3: (a3:) =
3:<∑

8=(3:−1)<+1
6(Y8−<, · · · , Y (3:−1)<, 0 (3:−1)<+1, · · · , 08).

Let "3; (a3;) = E(�̃3; (a3;)), and "3;−2 (a3;−3) = E(�̃3;−2 (a3;−3)). For 1 ≤ ; ≤  , let1115

.; (a3;−3, a3;) := �̃3;−2 (a3;−3) − "3;−2 (a3;−3) + �̃3;−1 + �̃3; (a3;) − "3: (a3;). (C.13)

Subsequently, we will denote .; (a3;−3, a3;) by .a
;

to emphasize the dependency on a. Due to our condi-
tioning, .;’s are independent. The corresponding mean and variance functionals, for 1 ≤ : ≤  , are

": (a) =
:∑
;=1
["3;−2 (a3;−3) + "3; (a3;)], (C.14)

&: (a) =
:∑
;=1
+; (a3;−3, a3;), (C.15)

where+a
;

:= +; (a3;−3, a3;) = E[.a
;
.a>

;
]. Let�3;−1 ((3;−2) = E[�̃3;−1 |(3;−2]. We will decompose+; as fol-1120

lows:

+a
; = E(.a

; .
a>

; )
= E

[ (
E[.a

; |(3;−2, (3;−1] − E[.a
; |(3;−2]

) (
E[.a

; |(3;−2, (3;−1] − E[.a
; |(3;−2]

)>]
+ E

[(
E[.a

; .
a>

; |(3;−2]
)2

]
= E

[ (
�̃3;−1 − �3;−1 ((3;−2) + �̃3; (a3;) − "3; (a3;)

) (
�̃3;−1 − �3;−1 ((3;−2) + �̃3; (a3;) − "3; (a3;)

)>]
1125

+ E
[ (
�̃3;−2 (a3;−3) − "3;−2 (a3;−3) + �3;−1 ((3;−2)

) (
�̃3;−2 (a3;−3) − "3;−2 (a3;−3) + �3;−1 ((3;−2)

)>]
:= +̃2; (a3;) + +̃2;−1 (a3;−3). (C.16)

Let us accumulate +0
;
(a3;) = +̃2; (a3;) + +̃2;+1 (a3;). Then, for all C ∈ N,

C∑
;=1
+; (a3; , a3;+3) = +̃1 (a0) +

C−1∑
;=1
+0
; (a3;) + +̃2C (a3C ). (C.17)

We will invoke Proposition 10 with a; = ;�, and B =  /�, where � = b 2/W/log2  c, which allows us to
apply Theorem 4 of Götze & Zaitsev (2009) on a set A such that P(a ∈ A) → 1. Therefore, we obtain1130

Pa

(
max

1≤8≤=
|Γa
8 − �a

8 | ≥ 2G
)
≤ �0

!aW

GW
, (C.18)

where Γa
8

:=
∑;8
;=1.

a
;

, and �a
8

:=
∑;8
;=1,

a
;

, where ,a
;

8=3∼ # (0, +a
;
). Observe that, E[!W ((] ≤

2W max; E[|(̃;,<+; |W] = $ (=<W/2−1), which is >(=W/?) using (C.3). Thus, putting G = =1/? yields

max
1≤8≤=

|Γ(
8
− �(

8
| = >P (=1/?). (C.19)

The probability space for the above convergence is exactly same as that in Berkes et al. (2014), as well as
Bonnerjee et al. (2024). Observe that we can write �a

8

3
= la

8
+ 'a

8
, with la

:
=

∑:−1
;=1 +

01/2

;
(a3;)/a

;
, and let

'a
:
= +̃

1/2
1 (a0)/00 + +̃

1/2
2: (a3:)/0: , and (/0

;
) 
;=1 are i.i.d standard Gaussian random variables. Clearly,1135

P( max
1≤:≤ 

|+̃2: ((3:) | ≥ 2=2/?) ≤
 ∑
:=1

P( |+̃2: ((3:) | ≥ 2=2/?) ≤ 2−W/2 =

3<
=−W/? ‖+̃2: ((3:)‖W/2 = >(1).

(C.20)
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Similarly, |+̃1 ((0) | = >P (=2/?). Therefore, we can construct i.i.d. /(
;
∼ # (0, �3), independent of Y’s, such

that

max
1≤8≤=

|�(
8
−Φ(

8
| = >P (=1/?), (C.21)

where Φ(
8
=

∑;8−1
;=1 +

01/2

;
((3;)/

(
;
. Together with (C.19), (C.21) implies that

max
1≤8≤=

|Γ(
8
−Φ(

8
| = >P (=1/?). (C.22)

In view of (Γ8 (() + ";8 (())1≤8≤=
3
= ((�

8
)1≤8≤= and (C.22), we need to prove strong invariance forΦ8 + "(

;8
. 1140

Let for 1 ≤ ; ≤  ,

�̃; = +
0
; ((3;)1/2/; + "3; ((3;) + "3;+1 ((3;). (C.23)

Let (♮
8
=

∑;8
;=1 �̃; . Note that by the same argument as in (C.20), we have

max
1≤8≤=

|Φ8 + ";8 (() − (
♮

8
| = max

1≤8≤=
|+0
;8
((3;8 )

1/2/;8 − "3;8+1
(
(3;8

)
+ "1

(
(0

)
| = >P (=1/?). (C.24)

One can easily verify that with our choice of a: and B, conditions (C.67) and (C.68) are satisfied by this
new process (♮

8
. Hence, by Theorem 4 of Götze & Zaitsev (2009), we have a Gaussian process �8 ∼

# (0,∑;8
;=1 Var( �̃; �̃>; )) such that 1145

max
1≤8≤=

|(♮
8
− �8 | = >P (=1/?). (C.25)

C.1.2. Regularizing Gaussian Approximation

Observe that

+0
; (a3;) =E[�̃3;−1�̃

>
3;−1] + E[�̃3; (a3;)�̃3; (a3;)>] − "3; (a3;)"3; (a3;)> + ‖�̃3;+1 (a3;)‖2

−"3;+1 (a3;)"3;+1 (a3;)> − E[�3;−1 ((3;−2)�3;−1 ((3;−2)>] + E[�3;+2 ((3;+1)�3;+2 ((3;+1)>]
+E

[
�̃3;−1�̃3; (a3;)>

]
+ E

[
�̃3; (a3;)�̃>3;−1

]
1150

+E
[
�̃3;+1 (a3;)�3;+2 ((3;+1)>

]
+ E

[
�3;+2 ((3;+1)�̃3;+1 (a3;)>

]
(C.26)

Therefore,

Ẽ; := E[ �̃; �̃>; ] =E[�̃3;−1�̃
>
3;−1] + E[�̃3; �̃

>
3;] + E[�̃3;+1�̃

>
3;+1] + E[�̃3;−1�̃

>
3;] + E[�̃3; �̃

>
3;−1] + E[�̃3; �̃

>
3;+1]

+E[�̃3;+1�̃
>
3;] + E[�̃3;+1�̃

>
3;+2] + E[�̃3;+2�̃

>
3;+1] − E[�3;−1 ((3;−2)�3;−1 ((3;−2)>]

+E[�3;+2 ((3;+1)�3;+2 ((3;+1)>] . (C.27) 1155

We will try to approximate Ẽ; by the long-run covariance Σ∞. Rest of the proof is also heavily influenced by
the arguments of Theorem 2.5 in Bonnerjee et al. (2024); however, for the sake of convenience, we present
the complete proof with necessary modifications due to the multivariate structure of the theorem. To that
end, let �⊕

:
=

∑:<
9=(:−1)<+1

(
e⊕
9
− E(e⊕

9
)
)
. Note that for all 9 ≥ 1, 1 ≤ B ≤ 3, ‖�̃9B − �⊕9B ‖ ≤

√
<Θ<,2 ≤

√
<Θ<,? . Thus, using Cauchy-Schwarz, and �⊕

9
=

∑ 9

:=−∞ %:�
⊕
9

, for 9 ≥ 1, 1 ≤ B, C ≤ 3, 1160

|E[�̃9B �̃9C ] − E[�⊕9B�
⊕
9C | ≤ ‖�

⊕
9B ‖‖�̃9C − �

⊕
9C ‖ + ‖�̃9C ‖�̃9B − �

⊕
9B ‖ ≤ 4<Θ<,?Θ0, ? . (C.28)

Therefore, |E[�̃9 �̃>9 ] − E[�⊕9 �
⊕>
9C
| = $ (<Θ<,?). Further, note that for :, ; ≥ 1 and 1 ≤ B, C ≤ 3, we obtain

|E(4:B4;C − 4⊕:B4
⊕
;C
) | =|E(4:B4;C1max{ |4:B | , |4;C | }≤=1/? ) − E(4⊕:84

⊕
; 9
) + E(4:84; 91max{ |4:B | , |4;C | }>=1/? |

=| − E(4⊕
:B
4⊕
;C

1max{ |4:B | , |4;C | }>=1/? ) + E(4:B4;C1max{ |4:B | , |4;C | }>=1/? |
≤|E(4⊕

:B
4⊕
;C

1max{ |4:B | , |4;C | }>=1/? ) | + |E(4:B4;C1max{ |4:B | , |4;C | }>=1/? |
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≤E
(
( |4:B |2 + |4;C |2)1max{ |4:B | , |4;C | }>=1/?

)
= >(=2/?−1).1165

Next, observe that, for ; > : ,

|E(4:B4;C ) | = |
∑
8∈Z

∑
9∈Z

E
[
(%84:B) (%94;C )

]
| ≤

∑
8∈Z
‖%8 (4:B)‖‖%8 (4;C )‖

≤
:∑
8=∞

X? (: − 8)X? (; − 8) =
∞∑
8=0

X? (8)X? (8 + ; − :). (C.29)

Noting that |E(e⊕
8
) | = >(=1/?−1), we have, for a fixed 0 ≤ 9 ≤ < − 1 and ; ≥ 0,

|E(�9+1�>9+1 − �
⊕
9+1�

⊕>
9+1) | =

���� <∑
:=1

E(e9<+:e>9<+: − e⊕
9<+:e

⊕>
9<+:) +

<∑
B≠C

E(e9<+Be>9<+C − e⊕9<+Be
⊕>
9<+C )1170

−
(
E[

<∑
:=1

e⊕
9<+:]

) (
E[

<∑
:=1

e⊕
9<+:]

)> ����
≤ >(<=2/?−1) +$ (;<=2/?−1 + <

∞∑
B=;+1

∞∑
8=0

X? (8)X? (8 + B)>),

where the last line follows from using the fact that there are ≤ < terms of the form E(e:e>:+B − e⊕
:
e⊕>
:+B) for

a fixed B ≤ < and applying (C.29). Note that
∑∞
9=;

∑∞
8=0 X? (8)X? (8 + 9) ≤ Θ0, ?Θ;, ? . Further, using (C.29)

repeatedly,1175

|E(�:�>:+1) |

≤
2<∑
9=0
(< − |< − 9 |)

∞∑
8=0

X? (8)X? (8 + 9)

=

∞∑
8=0

X? (8)
(
X? (8 + 1) + 2X? (8 + 2) + · · · + <X? (8 + <) + (< − 1)X? (8 + < + 1) + · · · + X? (8 + 2< − 1)

)
≤
∞∑
8=0

X? (8)
(
Θ8+1, ? + Θ8+2, ? + · · · + Θ8+2<−1, ?

)
≤
∞∑
8=0

X? (8)
2<−1∑
9=1

Θ9 , ? = Θ0, ?

2<−1∑
9=1

Θ9 , ? = $
©­«

2<−1∑
9=1
( 9 + 1)−�ª®¬ = $ (1), (C.30)1180

since � > 1. Therefore,����Ẽ; − E[�3;−1�
>
3;−1 + �3;�

>
3; + �3;+1�>3;+1]

����
<

= $ (Θ<,? +min
;≥1
{;=2/?−1 + Θ;, ?}). (C.31)

Observe that lim<→∞ E[�3;�
>
3;]/< = Σ∞. Thus in view of (C.31),

|Ẽ;/< − Σ∞ | = $ (Θ<,? +min
;≥1
{;=2/?−1 + Θ;, ?}) = >(1). (C.32)

Recall�8 from (C.25). Clearly, in view of Lemma 6, we can write�8 =
∑;8
;=1

∑;<
:=(;−1)<+1

Ẽ
1/2
;

<1/2 /: for some
i.i.d. standard Gaussian random vectors /: , 1 ≤ ; ≤  . Consider

B̃8 =
;8∑
;=1

;<∑
:=(;−1)<+1

Ẽ
1/2
;

<1/2 /: +
8∑

:=;8<+1

Ẽ
1/2
;8+1

<1/2 /: ,
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and B8 =
∑8
:=1 Σ

1/2/: . Firstly, using sup; |Ẽ; | = $ (<), and (C.3),

max
1≤8≤=

|Ẽ;8+1 | = $ (<) = >(=(W/?−1)/(W/2−1) ),

which immediately yields 1185

max
1≤8≤=

|�8 − B̃8 | = >P (=(W/?−1)/(W−2) log =) = >P (=1/?). (C.33)

Now, in our final approximation step we will show B̃8 is close to B8 . To that end, note that

Ψ= := Var(B̃= − B=) =
;=∑
;=1

<

(
Ẽ

1/2
;

<1/2 − Σ
1/2
∞

)2
+ (= − ;=<)

(
Ẽ

1/2
;=+1

<1/2 − Σ
1/2
∞

)2
. (C.34)

Clearly, the condition _min (Σ∞) ≥ 2 > 0 and (C.32) imply that for all sufficiently large <, _min

(
Ẽ

1/2
;

<1/2 +

Σ
1/2
∞

)
> 2/2. Therefore, in view of (C.32),

d★
(
Ẽ

1/2
;

<1/2 − Σ
1/2
∞

)2
®

d★
(
Ẽ;
<
− Σ∞

)2

_min

(
Ẽ

1/2
;

<1/2 + Σ
1/2
∞

)2 = $

(
<−2� +min

;≥1
{;=2/?−1 + Θ;, ?}2

)
,

which, together with Lemma 5 immediately yields, 1190

Ψ= = $

(
=<−2� + =

(
min
;≥1
{;=2/?−1 + Θ;, ?}

)2
)
= >(=2/?/log log =). (C.35)

Observing that B̃= − B= is a Gaussian process with independent increments and applying the law of iterated
logarithm, we obtain

lim
=→∞

���� B̃= − B=√
2‖Ψ=‖ log log ‖Ψ=‖

���� ≤ 1 almost surely,

which shows

max
1≤8≤=

|B̃8 − B8 | = >P (=1/?) (C.36)

in view of (C.35). Of course (C.36) is true if limΨ2
= < ∞. The equations (C.8), (C.10), (C.12), (C.25),

(C.33) and (C.36) combined completes the proof. � 1195

C.2. Proof of Lemma 1
Proof. Let (8 =

∑8
9=1 -9 denote the partial sums of -9 ’s. Since the quantities ((8 − 8 -̄· 9 )=8=1 are invariant

with respect to `!
9

, therefore, without loss of generality, suppose `!
9
= 0 for 1 ≤ 9 ≤ 3. In light of Theorem

1, there exists independent random variables Z8 ∼ # (-8 , Σ∞) such that

max
1≤8≤=

|(8 −
8∑
:=1

Z8 | = >P (=1/?). (C.37)

Write |)= − )/= | = |,1 −,2 |/
√
= where 1200

,1 :=
3∑
9=1

[
|(=ĝ9 , 9 − =ĝ9 -̄· 9 | − |(/=g̃/

9
, 9
− =g̃/9 /̄· 9 |

]
,
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,2 :=
3∑
9=1

[
|(=ĝ, 9 − =ĝ-̄· 9 | − (/=g̃/ , 9 − =g̃

/ /̄· 9 |
]
.

For,1, observe that by definition of ĝ9 and g̃9 ,

| |(=ĝ9 , 9 − =ĝ9 -̄· 9 | − |(/=g̃/
9
, 9
− =g̃/9 /̄· 9 | | ≤ max

1≤8≤=
|(8 9 − 8 -̄· 9 − (/8 9 + 8/̄· 9 |,

which entails, in light of (3.4) and (C.37), that

|(=ĝ9 , 9 − =ĝ9 -̄· 9 | − |(/=g̃/
9
, 9
− =g̃/9 /̄· 9 | = >P (=1/?), (C.38)1205

where we have used that Ω= = 2 − 1/=. Now we focus on ,2. Let \-8 := (+-
8,1, . . . , +

-
8,3
)>, where +-

8, 9
’s

are defined as in (B.3). Similarly define \/8 based on Z1, . . . ,Z=. We use the notation | · |L1 for the vector
!1 norm. Note that =ĝ := arg max1≤8≤= |\-8 |L1 , and similarly, =g̃/ := arg max1≤8≤= |\/8 |L1 . Therefore, a
similar treatment to (C.38) yields,

,2 =

����|\-=ĝ |L1 − |\/=g̃/ |L1

���� ≤ max
1≤8≤=

|\-8 − \/8 |L1 = >P (=1/?), (C.39)1210

where we have used the uniform over 1 ≤ 9 ≤ 3 bound from Theorem 1 to obtain the >P (=1/?) term. The
proof is complete in light of (C.38) and (C.39). �

C.3. Proofs of Section 3.2
In this section, we will prove Theorem 2, establishing the consistency of our estimate of long-run co-

variance matrix. We begin with a proof for the Proposition 3, which might be of independent interest.1215

Proof of Proposition 3. Let B := {1 ≤ 9 ≤ 3 : X9 > 0}. To facilitate an intermediary oracle estimate,
we define

˜̀!9 =
1
b=g9c

b=g9 c∑
8=1

-8 9 , ˜̀'9 =
1

= − b=g9c

=∑
8=b=g9 c+1

-8 9

for all 1 ≤ 9 ≤ 3. Note that in particular for 9 ∉ B, we pick a dummy g9 ∈ (0, 1). This is consistent with our
notion of synchronization, where we assume the change-points to be synchronized if the jump is zero. For
1 ≤ 8 ≤ =, 1 ≤ 9 ≤ 3, define -̃8 = ( ˜̀81, . . . , ˜̀83) with ˜̀8 9 = ˜̀!

9
+ ( ˜̀'

9
− ˜̀!

9
)�{8/= > g9 }. Since -̂8 − -8 is1220

invariant with respect to the mean left of change-point, without loss of generality we can assume `!
9
= 0

for X9 > 0, and `9 = 0 otherwise. In light of Cauchy-Schwarz inequality, it is enough to upper bound
=∑
8=1
( ˆ̀8 9 − `8 9 )2 (C.40)

for 1 ≤ 9 ≤ 3. We start with an upper bound on
∑=
8=1 ( ˆ̀8 9 − ˜̀8 9 )2. For ease of exposition, let us introduce

some more notations. For 1 ≤ 9 ≤ 3, let

D!!
9

= | ˆ̀!
9
− ˜̀!

9
|,

D''
9

= | ˆ̀'
9
− ˜̀'

9
|, and,

D!'
9

= | ˆ̀!
9
− ˜̀'

9
|�{ĝ9 > g9 } + | ˆ̀'9 − ˜̀!

9
|�{g9 > ĝ9 }.

(C.41)

Let us further denote e9 9 = |ĝ9 − g9 | for 1 ≤ 9 ≤ 3. Observe that1225

D!'
9 ≤ max

{���� 1
=ĝ9

=ĝ9∑
8=1

48 9 −
1

=(1 − g9 )

=∑
8==g9+1

48 9

�����{ĝ9 > g9 },���� 1
= − =ĝ9

=∑
8==ĝ9+1

48 9 −
1
=g9

=g9∑
8=1

48 9

�����{g9 > ĝ9 }}
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+ |X9 | + � |X9e9 9 |
= $P ( |X9 | + 1/

√
=), (C.42)

uniformly in 9 , where the $P (·) rate follows from Lemma 3 and Proposition 1. Note that in particular for 1230

9 ∉ B, the tactic of choosing an arbitrary g9 ∈ (0, 1) is crucial; otherwise, say for g9 = 0, we would end up
with ���� 1

=ĝ9

=ĝ9∑
8=1

48 9 −
1
=

=∑
8=1

48 9

���� ≤ max
1≤:≤=

���� 1: :∑
8=1

48 9 −
1
=

=∑
8=1

48 9

���� = $P (1),

which is worse than the $P (1/
√
=) rate we obtain in (C.42). Similar to (C.42) one can show

D!!
9 ∨ D''

9 = $P (
1
√
=
∧ 1
=|X9 |
) uniformly in 9 . (C.43)

It can be verified by some elementary algebra that
=∑
8=1
( ˆ̀8 9 − ˜̀8 9 )2 ≤=e9 9 (D!'

9 )2 + =g9 (D!!
9 )2 + =(1 − g9 ) (D''

9 )2, (C.44) 1235

which in light of Proposition 1, (C.42) and (C.43), immediately yields
=∑
8=1
( ˆ̀8 9 − ˜̀8 9 )2 = $P (1), for 1 ≤ 9 ≤ 3. (C.45)

We would like to point out that in (C.44), only =e9 9 (D!'
9
)2 contributes exactly to the $P (1) rate, and rest

of the terms are at most $P ((=X9 )2)−1 ∧ 1). Moreover, noting that |(4
= 9
| = $P (

√
=) for each 1 ≤ 9 ≤ 3,

it is easy to see that
∑=
8=1 ( ˜̀8 9 − `8 9 )2 = $P (1). Therefore, preceding discussion along with (C.45) and

Cauchy-Schwarz inequality completes the proof of the Lemma. � 1240

Now we move towards proving the main result of this section.

Proof of Theorem 2. We first show that for 0 ≤ : ≤ �=
d★(Γ̂: − Γ:) = $P (1/

√
=), (C.46)

where Γ: = E[e0e>
:
]. Using Gershgorin circle theorem and since 3 is fixed, it is enough to show that

R=, 9,; := | (Γ̂:)9 ,; − (Γ:)9 ,; | is small for all 1 ≤ 9 , ; ≤ 3. Observe that, from (1.1)

|R=, 9,; | ≤
����1= =−:∑

8=1
48 948+:,; − (Γ:)9 ,;

���� + ����1= =−:∑
8=1
( ˆ̀8 9 − `8 9 ) ( ˆ̀8+:,; − `8+:,;)

����+ 1245����1= =−:∑
8=1

(
48 9 ( ˆ̀8+:,; − `8+:,;) + 48+:,; ( ˆ̀8 9 − `8 9 )

)����. (C.47)

The second term in (C.47) yields a bound of $P (1/=) from Proposition 3. On the other hand, for the first
term in (C.47), an argument same as Lemma 1 of Wu & Pourahmadi (2009) yields that����1= =−:∑

8=1
48 948+:,; − (Γ:)9 ,;

���� = $P (=2/?′−1 + �==−1),

where ?′ = ? ∧ 4. Note that 1
=

∑=−:
8=1 42

8 9
= $P (1). Since 1/

√
= < =2/?′−1, Therefore, by Cauchy-Schwarz

inequality, the third term is also $P (=2/?′−1). Thus we have established (C.46). Combining this with 1250∑
: | (:/�=) | = $ (�=), the consistency of our estimator can be characterized as

d★(Σ̂=,�=
− E[Σ̂=,�=

]) = $P

(
�==

2/?′−1 + �2
==
−1

)
= $P (�==2/?′−1). (C.48)
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The last equality in (C.48) follows from �==
2/?′−1 → 0. On the other hand, the bias term can be tackled

as follows. Note that max1≤ 9 ,;≤3 |W:, 9,; | ≤
∑
B∈Z \B, ?\:+B, ? . Hence, for a constant C3 depending on 3,

=∑
:=�=+1

d★(Γ:) ≤ C3
∑
B∈Z

\B, ?

∞∑
:=�=+1

\:+B, ? ≤ C3Θ0, ?Θ�=+1, ? = $ (�−�= ),

and1255

�=∑
:=1
| (:/�=) − 1|d★(Γ:) ≤ C3

∑
B∈Z

\B, ?

�=∑
:=1
(:/�=)\:+B, ? = $ (1/�=),

which together yield

d★(E[Σ̂=,�=
] − Σ∞) = $ (�−1

= ). (C.49)

Hence, (C.48) along with (C.49) jointly implies (3.8), thereby completing the proof. �

C.4. Auxiliary Results for Theorem 1
In the following, Lemma 6 enables us to represent a Gaussian vector as sums of some other i.i.d. Gaus-1260

sian vectors, which in turns helps us recover finer decompositions. This result may be of independent
interest. The subsequent series of propositions, leading up to Proposition 10, enables us to use Theorem 4
of Götze & Zaitsev (2009) on our conditionally independent processes .a

;
as well as their unconditional

counterparts (♮
8
. Results similar to Propositions 6-10 also appear in Karmakar & Wu (2020), however our

results do not directly follow from those results due to the different variance decomposition we pursued in1265

(C.16)-(C.17), which also necessitates many new technical novelties.

Lemma 6. Let �, �, � ∈ R3×3 be positive semi-definite matrices such that � = � + �. Suppose / ∼
# (0, �) be given. Then there exists /1, /2 independent, such that /1 ∼ # (0, �) and /2 ∼ # (0, �).

Proof. Let � = �−1/2��−1/2, where we use the fact that � is symmetric and positive semi-definite to
deduce uniqueness of �. Let � = � (� − �). Draw, ∼ # (0, �) independent of / . Define1270

*1 = �* + �, ; *2 = (� − �)* − �,,

and /1 = �1/2*1, /2 = �1/2*2. Note that *1,*2 are jointly Gaussian by virtue of being linear combina-
tions of two Gaussian random variables. It can be verified by elementary calculation that /1, /2 satisfies
the requirements. �

Proposition 6. Recall �9 from (C.11). Then it holds that1275

Ω(_<) = _min (Var(�̃9 )) ≤ d★(Var(�̃9 )) = $ (<Θ2
0,2). (C.50)

Proof. Without loss of generality assume 9 = 1. Observe that lim
<→∞

Var(�1)
<

= Σ. Therefore it holds that

Ω(_<) = _min (Var(�1)) ≤ d★(Var(�1)) ≤ ‖�1‖2 = $ (<Θ2
0,2), (C.51)

where the first and second equality follows from _min (Σ∞) = Ω(1) and Burkholder’s inequality respec-
tively. Moreover, ‖(⊕< − �1‖ = >(<) and in view of Liu & Wu (2010), ‖(⊕< − �̃1‖ = $ (

√
<Θ<,2) =

>(
√
<). This along with (C.51) completes the proof. �

Proposition 7. For a sequence a, recall .a
9

from (C.13).Let ( = (· · · , (0, (3, · · · ), where (: =1280

(Y (:−1)<+1, · · · , Y:<). Then

Ω(<) = _min (Var(.(
9
)) ≤ d★(Var(.(

9
)) = $ (<). (C.52)

Proof. (C.52) follows directly from (C.51) in view of

|‖.(
9
‖2 − ‖�̃3 9−2 + �̃3 9−1 + �̃3 9 ‖2 | = ‖"3 9−2 (()‖2 + ‖"3 9 (()‖2 = $ (<Θ2

0,2).
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Proposition 8. Let � =  2/W/log2  . Then, there exists a constant 2 such that

P ©­«a : max
1≤C≤ /�

����Var
( C �−1∑
;=(C−1)�

.a
;

)
− Ea [Var

( C �−1∑
;=(C−1)�

.a
;

)
]
���� ≥ 2�<ª®¬→ 0 as =→∞. (C.53)

Proof. Without loss of generality assume that+a
;

are independent for different ;, otherwise we can break 1285

the sums inside the probability statement into the even and odd sums. Further we assume 3 = 1. The proof
easily generalizes for the multivariate case. Therefore, in view of (C.16), it is enough to show that

 max
1≤C≤ /�

max
(C−1)�≤;≤C �−1

[
P
(
|+̃2; (a3;) − E(+̃2; (a3;)) | ≥ 2;<

)
+ P

(
|+̃2;−1 (a3;−3) − E(+̃2;−1 (a3;−3)) | ≥ 2�<

)]
→ 0.

(C.54)
Assume without loss of generality ; = 1. Observe that ,

|+̃1 (a0) − E[+̃1 (a0)] | ≤ |‖�̃1 (a0)‖2 − E[‖�̃1 (a0)‖2] | + |‖"1 (a0)‖2 − E[‖"1 (a0)‖2] |
+ 2|E[�̃1�2 ((1) |01−<, · · · , 00] − E[�̃1�2 ((1)] |. (C.55) 1290

For the first term in (C.55), note that ‖�̃1 (a0)‖2 = E[(̃2
< |00, · · · , 01−<]. Therefore, Burkholder’s inequal-

ity yields

E
[
|‖�̃1 (a0)‖2 − E[‖�̃1 (a0)‖2] |W/2

]
= ‖

0∑
9=−<

%9 (̃
2
<‖

W/2
W/2 ≤ �W

( 0∑
9=−<

‖%9 (̃2
<‖2W/2

)W/4
. (C.56)

Using ‖%9-8 ‖W ≤ X8− 9 ,W , we obtain

‖%9 (̃2
<‖W/2 = $ (<1/2)

<∑
A=1

X̃A− 9 ,W = $ (<)=1/?−1/W
<∑
A=1

X
?/W
A− 9 , ? . (C.57)

In view of the fact that there exists �★ > �0 such that 3 − 2(�★ + 1)?/W = 0, observe thatΘ8, ? = $ (8−�) = 1295

$ (8−�′ (log 8)−�) for some �0 < �′ < min{�, �★} and � > 2W/?. The entire proof of the main theorem
goes through with �′ instead of �. Therefore, without loss of generality we assume 3 − 2(� + 1)?/W > 0.
Putting (C.57) back in (C.56),

0∑
9=−<

‖%9 (̃2
<‖2W/2 = $ (<)=2/?−2/W

<∑
9=0

( <∑
A=1

X
?/W
A+ 9 ,W

)2

= $ (<)=2/?−2/W
<∑
9=0

log2 <∑
;=0

22; (1−?/W)Θ2?/W
2;+ 9 , ? 1300

= $ (<)=2/?−2/W<3−2(�+1) ?/W (log =)−2?/W ,

which immediately yields,

E
[
|‖�̃1 (a0)‖2 − E[‖�̃1 (a0)‖2] |W/2

]
= $ (1)<W−(�+1)

?

2W =
W

2? −1/2 (log =)−2?/W = >((�<)W/2), (C.58)

where the last equality follows from (C.5) and log � � log< � log =. For the second and third terms of
(C.55), note that using Cauchy-Schwarz and Jensen’s inequality,

|‖"1 (a0)‖2 − E[‖"1 (a0)‖2] | ≤ ‖�̃1 (a0)‖2 and ‖(̃<‖2 = $ (<), (C.59)

and 1305

E

����E[�̃1�2 ((1) |00, · · · , 01−<]
����W/2 = $ (<W/2)‖E[�̃1 (a0)‖2. (C.60)
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For |+̃2 (a3) − E(+̃2 (a3)) |, a treatment similar to (C.59) and (C.60) reveals that we only need to bound

P
(
|‖�̃3 (a3)‖2 − E[‖�̃3 (a3)‖2] | > ��<

)
. Proceeding as in (C.58)

‖(̃2
< − E[(̃2

< |01, · · · , 0<] ‖W/2W/2 = >((�<)W/2). (C.61)

Finally, using Nagaev Inequality and in view of the fact E[(̃2
<] = $ (<), we have

P
(
|(̃2
< − E[(̃2

<] | > ��<
)
≤ P

(
|(̃< | > �

√
�<

)
≤ � <

(�<)W/2
Θ
?

0, ? + exp(−�1�). (C.62)

For the second term in (C.62), clearly  exp(−�1�) → 0. For the first term,  <

(�<)W/2 =
logW  
<W/2−1 → 0. This1310

completes the proof. �

Proposition 9. Suppose !aW =
∑ 
;=1 E[|.a

;
|W] with .a

;
defined in (C.13). Then for some constants 2 and

� it holds that

P(2 <W/2 ≤ !aW ≤ � <W/2) → 1. (C.63)

Proof. Observe thatE[!aW ] = $ ( <W/2), andE[|(̃< − "1a |
W |a] ≤ E[|(̃< |W |a]. Therefore, it is enough

to show that1315

P

(
|
 ∑
;=1

&; − E[&;] | > � 
)
→ 0, (C.64)

where &; = <−W/2E[|(̃3<; − (̃3<(;−1) |W |a3(;−1) , a3;]. Without loss of generality we can assume &; to be
independent, otherwise we can consider even and odd sums separately. A treatment similar to (C.59) and
(C.62) yields,

P
(
&9 > �

W/2
)
= >( −1). (C.65)

In light of (C.65), we will be done if we show

P

(
 ∑
;=1
[)�W/2 (&;) − E[)�W/2 (&;)]

)
→ 0. (C.66)

(C.66) is immediate using Markov Inequality upon realizing that E[&;] = $ (1), which implies that1320

E[)�W/2 (&;)2] = $ (�W/2). �

Proposition 10. Choose a; = ;� and B �  /� with � = b 2/W/log2  c. Further let Γa
:
=

Var(∑a:
;=a:−1+1.

a
;
). Then for some constants 21, 22 we have, with probability going to 1,

21F
2 ≤ _min (Γa

: ) ≤ d
★(Γa

: ) ≤ 22F
2, (C.67)

where F = (!aW )1/W/log B. Further, if Za
:,W

=
∑a:
;=a:−1+1 E[|.

a
;
|W], then for some 0 < Y < 1 and constant 23,

it holds with probability going to 1,1325

233
W/2BY (log B)W+3 max

1≤:≤B
Za:,W ≤ !

a
W . (C.68)

Proof. (C.67) is immediate from Propositions 7, 8 and 9 along with our choice �. Moreover, exactly as
in Proposition 9, we can show Za

:
� �<W/2 with probability going to 1. Then (C.68) follows as =→∞.�

D. Proofs of Section 4
Here, we establish the theoretical results concerning our bootstrap procedure.
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Proof of Proposition 4. Our proof will follow along similar lines to Proposition 4.3 of Mies & Steland 1330

(2023). Recall that Σ∞ =
∑
:∈Z E[e0e>

:
] is the long-run variance of the error process (e8). Observe that, by

Theorem 1, there exists Z1, . . . ,Z=
i.i.d∼ # (0, Σ∞) such that

P(*= 9 ≥ 0U−E= , 9 (Σ̂=,�=
) + 2=) ≤ U + P(0U, 9 (Σ∞) ≥ 0U−E= , 9 (Σ̂=,�=

) + 2=/2)+
P( |*= 9 −*= 9 (Z1, . . . ,Z=) | > 2=/2). (D.1)

Let Σ2 be a symmetric, positive definite matrix, and denote by R := d★(Σ∞ − Σ2). Then by Lemma 5.2 1335

of Mies & Steland (2023), there exists i.i.d Gaussian variables (1, . . . , (= such that (Z̃8 := Z8 + (8)=8=1
i.i.d∼

# (0, Σ2). Using Doob’s L? maximal inequality (Theorem 2.2 of Hall & Heyde (1980)) for ? = 2, along
with the fact that d★(�) ≥ max9 ,; |�9; | for any square matrix �, implies that, for every 1 ≤ 9 ≤ 3,

E[|*= 9 (Z1, . . . ,Z=) −*= 9 (Z̃1, . . . , Z̃=) |2] ≤ �R

for some constant � > 0 possibly depending upon 3. Therefore,

P(*= 9 (Z1, . . . ,Z=) ≥ 0U−E= , 9 (Σ2) + 2=/2) 1340

≤U − E= + P( |*= 9 (Z1, . . . ,Z=) −*= 9 (Z̃1, . . . , Z̃=) | ≥ 2=/2)

≤U − (E= − 2�
R
22
=

) ≤ U, (D.2)

if R ≤ 22
=E=/(2�). Therefore, if R ≤ 22

=E=/(2�), then 0U, 9 (Σ∞) ≤ 0U−E= , 9 (Σ2) + 2=/2. Now we replace
Σ2 by Σ̂=,�=

. This being a random quantity, the corresponding random error be denoted as R̂. Thus, in
view of (D.2), from (D.1) we have 1345

P(0U, 9 (Σ∞) ≥ 0U−E= , 9 (Σ̂=,�=
) + 2=/2) ≤ P(R̂ > 22

=E=/(2�)).

Observe that by our choice of 2= and E=, from Theorem 2 we have

lim
=→∞

P(R̂ > 22
=E=/(2�)) + P( |*= 9 −*= 9 (Z1, . . . ,Z=) | > 2=/2) = 0.

Hence in light of (D.1), the proof of (4.2) is complete. �

Proof of Theorem 3. In the following,� will denote a constant depending on 3, g and Θ0, ? whose value
may change from line-to-line. Sometimes we also use ¦ or ® to hide these constant. We will follow the
proof strategy of Proposition 4, with some additional but significant modification necessitated by the form 1350

of our test statistic )=. By Theorem 1, there exists (1, . . . , (=
i.i.d∼ # (0, Σ∞) such that |(4

8
− ([

8
| = >P (=1/?).

Write

P()= ≥ 1U−ℎ= ( -̃, Σ̂=,�=
) + D=)

≤U + P(1U (-, Σ∞) ≥ 1U−ℎ= ( -̃, Σ̂=,�=
) + D=/2) + P( |)= − )= (Z1, . . . ,Z=) | > D=/2) (D.3)

where Z8 = (8 + -8 . For the third term in (D.3), Lemma 1 along with our choice of D= im- 1355

plies that lim=→∞ P(|)= − )= (Z1, . . . ,Z=) | > D=/2) = 0. Thus we focus on bounding P(1U (-, Σ∞) ≥
1U−ℎ= ( -̃, Σ̂=,�=

) + D=/2).
Hereafter, we write )= (Z1, . . . ,Z=) as ) -,Σ∞

= . Let Σ† be a symmetric positive definite matrix, with R :=
d★(Σ∞ − Σ†). Moreover, let g† ∈ (0, 1), (W†

9
)3
9=1 ∈ R, (a!

9
)3
9=1 ∈ R and (a'

9
)3
9=1 ∈ R be given, with these

quantities satisfying certain conditions mentioned subsequently in appropriate places. Consider a sequence 1360

of possibly random vectors -†1, . . . , -
†
= ∈ R3 such that

`
†
8 9
=

{
W9 , if 9 ∈ V0,
a
†
8 9
, if 9 ∈ V1.
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Here

a
†
8 9
=

{
h!
9
, if 8 ≤ =g†

h'
9
, if 8 > =g†.

Denote G!!
9

= h!
9
− `!

9
, G''

9
= h'

9
− `'

9
and G!'

9
= (h!

9
− `'

9
)�{g† > g} + (h'

9
− `!

9
)�{g > g†}. Fur-

ther, let k := |g† − g |. We point out that above definitions are motivated from the definition of D9 ’s from
(C.41). Indeed, we will pursue an argument conditional on G!!

9
, G!'

9
, G''

9
and g†

9
. Note that, by Lemma1365

5.2 of Mies & Steland (2023), there exists independent Gaussian random variable ,1, . . . ,,= such that
�8 := Z8 +,8 ∼ # (-8 , Σ†). Let ) -,Σ†

= = )= (�1, . . . ,�=). Further denote ) -† ,Σ†
= = )= (Z†1, . . . ,Z

†
=), where

Z†
8
= �8 + -†8 − -8 . Note that

P() -,Σ∞
= ≥ 1U−ℎ= (-†, Σ†) + D=/2)

≤U − ℎ= + P( |) -,Σ∞
= − ) -,Σ†

= | > D=/4) + P( |) -† ,Σ†
= − ) -,Σ†

= | > D=/4). (D.4)1370

Similar to Lemma 1 and (D.2), P( |) -,Σ∞
= − ) -,Σ†

= | > D=/4) ≤ �R/D2
=. To tackle |) -† ,Σ†

= − ) -,Σ†
= |,

we introduce some notation. Let +
†
8, 9

=
∑8
:=1 (/

†
: 9
− /̄†· 9 ), ĝ

†
9
= (arg max1≤8≤= |+

†
8, 9
|)/=, and ĝ† =

(arg max1≤8≤=
∑3
9=1 |+

†
8, 9
|)/=. Likewise, define +Λ

8, 9
, ĝΛ
9

and ĝΛ with �1, . . . ,�=. Now, simplify |) -† ,Σ†
= −

)
-,Σ†
= | as

3∑
9=1

���� ( |+†=ĝ†
9
, 9
| − |+Λ

=ĝΛ
9
, 9
|
)
−

(
|+†
=ĝ† , 9
| − |+Λ

=ĝΛ , 9
|
) ����/√=. (D.5)1375

For the first term in (D.5), note that����+†=ĝ†
9
, 9
−+Λ

=ĝΛ
9
, 9

���� ≤ max
1≤8≤=

���� 8∑
:=1
(/†
: 9
− /̄†· 9 − Λ: 9 + Λ̄· 9 )

����
= max

1≤8≤=

���� 8∑
:=1

`
†
: 9
− 8
=

=∑
:=1

`
†
: 9
−

8∑
:=1

`: 9 +
8

=

=∑
:=1

`: 9

���� (D.6)

For 9 ∈ V0, (D.6) immediately vanishes to 0. For 9 ∈ V1, we pursue a more careful approximation. Let
^9 = E

'
9
− E!

9
, and assume that |^9 | >> =−1/2 for 9 ∈ V1. Moreover, assume that G!!

9
= $ (=−1/2), and1380

k ≤ 1
=X2

1∨=^
2
1
. Subsequently, these conditions will be called as A, and 1A = 1 iff A is satisfied, and 0

otherwise. The motivation behind these assumptions will become clear once we move towards the un-
conditioning step of our argument. Similar to the proof of Proposition 1, we can be excused for assuming
X9 ≥ 0 for each 9 ∈ V1. Moreover, since ĝ9 , ĝ ∈ (2, 1 − 2), hence,

P(D) = 1, for 2 ≤ g ≤ 1 − 2, 9 ∈ V1 where 2 > 0 is some constant, (D.7)1385

with D := {arg max
1≤8≤=

|+Λ
8 9 | = arg max

=2≤8≤=(1−2)
|+Λ
8 9 |, arg max

1≤8≤=
|+†
8 9
| = arg max

=2≤8≤=(1−2)
|+†
8 9
|}.

Rest of our arguments will proceed conditional on D. In the next step, we will show that the event E =

{ĝ†
9
= ĝΛ

9
, 9 ∈ V1} occurs with very high probability. To see this, note that, since X9 ≥ 0 and 9 ∈ V1, in

light of ĝ_
9
∈ (2, 1 − 2) from (D.7), as well as the decomposition of +8 9 ’s from (B.4),

P(+Λ

=ĝΛ
9

< 0 |D) = P(+�
=ĝ9

Λ < =ĝ
_
9 (1 − g9 )X9 �{ĝ_9 < g9 } + =g9 (1 − ĝ_9 )X9 �{ĝ_9 < g9 } |D)1390

→ 1, as =→∞ (D.8)

where � ∼ # (0, Σ†); the limiting assertion follows from noting max8 |+Λ
8, 9
| = $P (

√
=), and 9 ∈ V1 along

with event D implies that =(ĝ_
9
∧ 1 − ĝ_

9
)X9 >>

√
=. Call the event +Λ

=ĝΛ
9

< 0 in (D.8) as F . Employ-
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ing the fact that |g† − g | ≤ 1
=X2

1∨=^
2
1

as well as Proposition 1, one further obtains P(H |D) → 1, where

H := {+Λ

=ĝ
†
9

< 0}. Let ℎ8 9 = `†8 9 − `8 9 , and let _8, 9 =
∑8
:=1 (ℎ: 9 − ℎ̄· 9 ), where ℎ̄· 9 = =−1 ∑=

:=1 ℎ: 9 . More- 1395

over, denote g! = g† ∧ g, and g' = g† ∨ g. The following series of implications, conditional onD, F and
H , follow through from the definition of the event E.

E2 ⇐⇒ arg max
=2≤8≤=(1−2)

|+†
8 9
| ≠ arg max

=2≤8≤=(1−2)
|+Λ
8 9 |

⇐⇒ {|+Λ

=ĝΛ
9

| > |+Λ

=ĝ
†
9

|, |+Λ

=ĝΛ
9

+ _=ĝΛ
9
, 9 | < |+Λ

=ĝ
†
9

+ _
=ĝ
†
9
, 9
|}.

=⇒ |_=ĝΛ
9
, 9 − _=ĝ†

9
, 9
| > |+Λ

=ĝ
†
9

−+Λ

=ĝ
†
9

| 1400

=⇒ =|ĝ†
9
− ĝΛ9 | (g! |G!!9 | + k |G!'9 | + g' |G''9 |) ¦ |+Λ

=ĝ
†
9

−+Λ

=ĝ
†
9

|. (D.9)

Now, for the right hand side of (D.9), observe that noting |X9 | >> =−1/2 along with (B.4) and (B.19) implies
that

P( |+Λ

=ĝ
†
9

−+Λ

=ĝ
†
9

| ≥ =|ĝ†
9
− ĝΛ9 |X9 ) → 1.

Therefore, from (D.9), and our assumption G!!
9

= $ (=−1/2), and k ≤ 1
=X2

1∨=^
2
1
, one has P(E|D, F ,H) →

1 as =→∞. Using P(F |D) → 1 and P(H |D) → 1 as shown above, we finally arrive at 1405

P(E|D) → 1, as =→∞. (D.10)

Now we are ready for the coup de grâce for the case 9 ∈ V1. Clearly, under F , and keeping in mind (B.4),
it holds that P(+Λ

=ĝΛ
9

< _=ĝΛ
9
, 9 ) → 1, and consequently, a further conditioning by E and F implies

|+†
=ĝ
†
9
, 9
| − |+Λ

=ĝΛ
9
, 9
| = |+Λ

=ĝ
†
9
, 9
+ _

=ĝ
†
9
, 9
| − |+Λ

=ĝΛ
9
, 9
| = −_

=ĝ
†
9
, 9
. (D.11)

Here we have made use of the fact that |0 + 1 | − |0 | = −1 if 0 < −1. An analogous argument can also be
carried out for ĝ†. Therefore, conditional on D, E and F , for 9 ∈ V1, 1410(

|+†
=ĝ
†
9
, 9
| − |+Λ

=ĝΛ
9
, 9
|
)
−

(
|+†
=ĝ† , 9
| − |+Λ

=ĝΛ , 9
|
)
= _=ĝ† , 9 − _=ĝ†

9
, 9

®
√
=|ĝ†

9
− ĝ† |. (D.12)

Combining the analysis forV0, (D.6), and (D.12), one has, conditional on D, E, and F , that

|) -† ,Σ†
= − ) -,Σ†

= | ®
∑
9∈V1

|ĝ†
9
− ĝ† |,

which implies that 1415

P( |) -† ,Σ†
= − ) -,Σ†

= | > D=/4) ≤ P(
∑
9∈V1

|ĝ†
9
− ĝ† | ¦ D=) + P(E2 ∪ F 2) ® D−1

= max
9∈V1
(=^2

9 )−1 +max
9∈V1
(
√
=^9 )−1.

(D.13)

Hence, from (D.13) and (D.13), we arrive at P() -,Σ∞
= ≥ 1U−ℎ= (-†, Σ†) + D=/2) ≤ U if

ℎ= − �RD−2
= − �D−1

= max
9∈V1
(=^2

9 )−1 −max
9∈V1
(
√
=^9 )−1 ≥ 0. (D.14)

Clearly, P()= ≥ 1U−ℎ= (-†, Σ†) + D=/2) ≤ U implies that 1U (-, Σ∞) ≤ 1U−ℎ= (-†, Σ†) + D=/2. We now ap-
ply the implication (D.14) with `†

8 9
= ˜̀8 9 , g† = ĝ and Σ† = Σ̂=,�=

. The corresponding R, k, and G9 ’s are
denoted by R̂, k̂, and Ĝ9 respectively. All of these are random variables. In particular, an argument similar 1420
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to (C.42) and (C.43) shows that, under �0 in (1.3),

max
9∈V1
Ĝ!!91 ∨ Ĝ

''
91 = $P (

1
√
=
), and max

9∈V1
Ĝ!'91 /|X9 | = $P (1).

Therefore, all these random variables satisfy the conditions we put on the sequences -†
8

with probability
tending to 1. Moreover, Theorem 2 instructs R̂ = $P (�==2/?′−1 + �−1

= ), which implies, in light of (D.14),

lim
=→∞

P(1U (-, Σ∞) ≥ 1U−ℎ= ( -̃, Σ̂=,�=
) + D=/2)

≤ lim
=→∞

P
(
R̂ ¦ D2

=ℎ=

)
+ lim
=→∞

P
(
max
9∈V1
(=X̂2

9 )−1 ¦ D=ℎ=)
)
+ lim
=→∞

P
(
max
9∈V1
(
√
=X̂9 )−1 ¦ ℎ=)

)
(D.15)1425

where, the final equality follows from our choice of D= and ℎ=. This completes the proof of our theorem.�

Proof of Theorem 4. For a generic sequence of independent Gaussian random vectors �1, . . . , �= with
�8 = .8 + /8 with /8

8.8.3.∼ # (0, Γ) for a sequence of vectors (.8)=8=1 ∈ R
3 and a covariance matrix Γ ∈

R3×3 , we denote )= (�1, . . . , �=) as in (2.3), by ).,Γ= . Consider D= and ℎ= same as in Theorem 3. Note that

P()= ≤ 1U ( -̃, Σ̂=,�=
))1430

≤P( |)= − ) -,Σ∞
= | > D=) + P(1U ( -̃, Σ̂=,�=

) − 1U−ℎ= ( -̃, Σ∞) > D=) + P()
-,Σ∞
= ≤ 1U−ℎ= ( -̃, Σ∞) + 2D=),

(D.16)

and, invoking Lemma 1 and our choice of D=, P( |)= − ) -,Σ∞
= | > D=) → 0 as =→∞. Next, consider two

generic covariance matrices Σ1 and Σ2. Let �8
8=3∼ # (.8 , Σ1) for 8 ∈ [=]. By Lemma 5.2 of Mies & Ste-

land (2023), there exist i.i.d. mean-zero Gaussian random vectors (8 , . . . , (= such that W8 := �8 + (8
8=3∼

# (.8 , Σ2). The corresponding )=’s for �’s and W’s are denoted as ).,Σ1
= and ).,Σ2

= respectively. The corre-1435

sponding mean zero errors associated with ).,Σ= be denoted by / . The notations +/
8, 9

and 5=, 9 are same as
in Section B. Further, let R = d★(Σ1 − Σ2). Write

P().,Σ1
= ≥ 1U−ℎ= (., Σ2) + D=) ≤ U − ℎ= + P( |).,Σ1

= − ).,Σ2
= | > D=). (D.17)

Additionally, for each 1 ≤ 9 ≤ 3,

max
1≤8≤=

|(�8 9 − 8�̄· 9 | − max
1≤8≤=

|(W
8 9
− 8W̄· 9 | ≤ max

1≤8≤=
|((
8 9
− 8(̄· 9 |,1440

and therefore, similar to the arguments preceding (D.2), E[|).,Σ1
= − ).,Σ2

= |2] ≤ �R. Hence, from (D.17), if
R ≤ �−1D2

=ℎ=, then P().,Σ1
= ≥ 1U−ℎ= (., Σ2) + D=) ≤ U, which immediately implies that

1U (., Σ1) ≤ 1U−ℎ= (., Σ2) + D=.

Consequently,

P(1U ( -̃, Σ̂=,�=
) − 1U−ℎ= ( -̃, Σ∞) > D=) ≤ P(d★(Σ̂=,�=

− Σ∞) > �−1D2
=ℎ=)) → 0 as =→∞, (D.18)

where the limiting assertion follows from Theorem 2 and the choice of D= and ℎ=. Finally, we deal with1445

the third term in (D.16). Since (2.9) is satisfied, let { 91, 92} = arg max{:1 ,:2 }∈H ( |X:1 | ∧ |X:2 |), and X★ =

|X91 | ∧ |X92 |. For a constant �0 = C/2 where C is as in (B.20), write

P() -,Σ∞
= ≤ 1U−ℎ= ( -̃, Σ∞) + 2D=) ≤ P() -,Σ∞

= ≤ �0
√
=X★) + P(1U−ℎ= ( -̃, Σ∞) > �0

√
=X★ − 2D=). (D.19)

We analyze (D.19) term-by-term. Let the individual and common change-point estimates in ) -,Σ∞
= be de-

noted by g̃9 , 9 ∈ [3], and g̃ respectively. Note that1450

P() -,Σ∞
= ≤ �0

√
=X★) ≤ P

( ∑
9∈{ 91 , 92 }

( |+/=g̃9 , 9 + 5=, 9 (=g̃9 ) | − |+
/
=g̃, 9 + 5=, 9 (=g̃) |) ≤ �0=X★

)
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≤ P
( ∑
9∈{ 91 , 92 }

( | 5=, 9 (=g̃9 ) | − | 5=, 9 (=g̃) |) ≤ �0=X★ +
∑

9∈{ 91 , 92 }
( |+/=g̃9 , 9 | + |+

/
=g̃, 9 |)

)
≤ P((C − �0)=X★ ≤ 2

∑
9∈{ 91 , 92 }

max
1≤8≤=

|+/8, 9 | −
∑

9∈{ 91 , 92 }
( | 5=, 9 (=g̃9 ) | − | 5=, 9 (=g9 ) |))

→ 0, (D.20)

where the third inequality follows from (B.20), and the limiting assertion follows from (B.16) and (B.21) in 1455

lieu of (2.9). On the other hand, for the second term in (D.19) we pursue yet another conditional argument.
For a generic . with a common change-point at b=g.c (in the sample level) with g. ∈ (2, 1 − 2), and jumps
at X.

9
, consider ).,Σ∞= and the corresponding individual and common change-point estimates as ĝ.

9
, 9 ∈ [3]

and ĝ. , respectively. We clarify that in this particular case we let g. vary with =. Consider bounding the
following probability: 1460

P().,Σ∞= ≥ �0
√
=X★ − 2D=)

≤
3∑
9=1

P( |+/
=ĝ.

9
, 9
+ 5=, 9 (=ĝ.9 ) | − |+/=ĝ. , 9 + 5=, 9 (=ĝ

.) | ≥ 3−1 (�0=X★ − 2
√
=D=))

≤
3∑
9=1

P( | 5=, 9 (=ĝ.9 ) | − | 5=, 9 (=ĝ.) | ≥ 3−1 (�0=X★ − 2D=
√
=) − |+/

=ĝ.
9
, 9
| − |+/=ĝ. , 9 |)

≤
3∑
9=1

(
P(�g.=|X.9 | |ĝ.9 − ĝ. | ≥ (23)−1 (�0=X★ − 2D=

√
=)) + P(2 max

1≤8≤=
|+/8, 9 | ≥ (23)−1 (�0=X★ − 2D=

√
=))

)
.

(D.21)

Due to (B.16), the second term in (D.21) yields 1465

3∑
9=1

P(2 max
1≤8≤=

|+/8, 9 | ≥ (23)−1 (�0=X★ − 2D=
√
=)) ≤ �3 (�0

√
=X★ − 2D=)−1.

For the first term we employ the proof of Proposition 1 along with g. ∈ (2, 1 − 2) to deduce

P(�g=|X.9 | |ĝ.9 − ĝ. | ≥ (23)−1 (�0=X★ − 2D=
√
=)) ≤�3 (=X★ |X.9 | − 2D= |X.9 |

√
=)−1�{�0=X★ − 2D=

√
= < =|X.9 |}.

(D.22)

Recall ˜̀ from Theorem 3. Let X̃9 = ˜̀=ĝ+1, 9 − ˜̀=ĝ+1, 9 for 9 ∈ [3]. Here, X̃9 = 0 for 9 ∈ V0. From (D.21)
and (D.22), one obtains in (D.19) that,

lim
=→∞

P(1U−ℎ= ( -̃, Σ∞) > �0
√
=X★ − 2D=) 1470

≤ lim
=→∞

P(�3
3∑
9=1
(=X★ |X̃9 | − 2D= |X̃9 |

√
=)−1�{|X̃9 | > �0X★ − 2D==−1/2} + �3 (�0

√
=X★ − 2D=)−1 > U − ℎ=)

≤ lim
=→∞

P(�3
∑

9: | X̃9 |>�0 X★−2D==−1/2

(=X★ |X̃9 | − 2D= |X̃9 |
√
=)−1 > U/2 − ℎ=/2)

≤ lim
=→∞

P((�0X★ − 2D==−1/2)−1 (=X★ − 2D=
√
=)−1 > (U/2 − ℎ=/2) (�33)−1) = 0 (D.23)

where in the second inequality we use that, �3 (�0
√
=X★ − 2D=) → ∞, and in the third one we invoke

(�0X★ − 2D==−1/2) (=X★ − 2D=
√
=) → ∞. Both these assertions are direct implications of (2.9) and our 1475

choice of D= and ℎ=. Equation (D.23) completes the proof in light of (D.16) and (D.19). �


	Introduction
	Organization
	Notation

	Methodology
	Test statistic for model (1.1)
	Dependence structure
	Validity and consistency of our test statistic

	Approximation of null distribution of T_n
	KMT-type Gaussian approximation
	Estimation of _

	Bootstrap algorithm and theoretical validity
	Applications: Simulation and Real Data analyses
	Simulation studies (Summary)
	Real data analyses

	Conclusion
	Simulation results
	Behavior of test statistic under H_0
	Performance of oracle bootstrap
	Choice of kernel function and bandwidth for estimation of _
	Simulation for Algorithm 3

	Proofs of Section 2: Behavior of test statistic
	Behavior under H_0: Validity
	Behavior under H_0c: Consistency

	Proofs of Section 3
	Proof of Theorem 1
	Proof of Lemma 1
	Proofs of Section 3.2
	Auxiliary Results for Theorem 1

	Proofs of Section 4

