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Abstract

With the growing use of large language models, concerns over content authenticity have
spurred a variety of watermarking schemes. These schemes use secret keys to detect machine-
generated text while remaining imperceptible to readers. Detection typically reduces to statistical
hypothesis testing for the presence of watermarks, a topic that is now well studied. In contrast,
the finer-grained task of localizing which segments of a text are watermarked is much less
explored; existing approaches often lack scalability or guarantees robust to paraphrasing and
post-editing. We bring a new perspective to this segmentation problem through the lens of
epidemic change-points and, by exploiting this connection, propose WISER, a novel and compu-
tationally efficient watermark segmentation algorithm. We establish finite-sample error bounds
and consistency for detecting multiple watermarked segments in a single text. Complementing
these theoretical results, our extensive numerical experiments show that WISER outperforms
state-of-the-art baseline methods, both in terms of computational speed as well as accuracy, on
various benchmark datasets embedded with diverse watermarking schemes. Together, these
theoretical and empirical results position WISER as an effective tool for watermark localization
and illustrate how classical statistical ideas can yield theoretically valid and computationally
efficient solutions to a modern problem of immediate importance.
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1 Introduction

Recent years have seen widespread popularity and adoption of Large Language Models (LLM) in

areas such as media, education, healthcare, and finance- domains where content creation, ownership

and automation (Touvron et al. 2023, Achiam et al. 2023) occupies central importance. However, an

unfortunate consequence of the exponential ascent of LLMs has been an increased propagation of

synthetic texts across the internet. This has raised significant security and legal concerns regarding

privacy, content authenticity and copyright infringement over multiple domains (Megías et al. 2022,

Bender et al. 2021, Crothers et al. 2023, Liang et al. 2024, Milano et al. 2023, Radford et al. 2023,

Chen & Shu 2023, Woodcock 2023). In particular, the ability of LLMs to generate a large volume

of texts makes them vulnerable to intended or unintended misuse by entities, often in violation of

the governing guidelines to achieve potential plagiarism or deceit (Ahmed et al. 2021, Lee et al.

2023). For example, recently, the use of LLM-generated text without proper attribution has evolved

into a full-fledged quagmire in the lawsuit between New York Times and OpenAI (Grynbaum &

Mac 2023). In the same mold, our colleagues in academia, and educators more generally, often

face a perhaps legally less challenging but equally important issue: AI-assisted education. The

use of AI may, prima facie, be encouraged in many low-stakes situations. However, an increased

proliferation of LLM-generated texts in critical assessments not only constitutes a malpractice, but

also deprives students of the potential to embark upon an important learning curve by themselves,

while simultaneously propagating unfair advantages to more privileged students who have access to

newer LLM models (Milano et al. 2023, Wang et al. 2024, Darvishi et al. 2024).

Such concerns were initially addressed by attempting to identify LLM-generated texts via spe-

cific patterns or properties of the said texts, such as cross-entropy or perplexity (Mitchell et al.

2023, ZeroGPT 2024, Radvand et al. 2025). However, the shortcomings of this approach have

become increasingly evident as more and more language models gain the ability to mimic the
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quirks of a human-generated text. Open-access, publicly funded large language models have been

conceptualized as another alternative, mitigating strategy (Akiki et al. 2022, Workshop et al. 2022,

Shrestha et al. 2023, Li et al. 2023, Üstün et al. 2024). In a different direction, and probably

most relevant with regards to fraud detection in education, “Watermarking methods” have been

proposed (Christ et al. 2024, Aaronson 2023), and widely adopted (Biden 2023, Bartz & Hu 2023)

as a detection mechanism. Watermarking schemes primarily exploit the tokenization structure of

large language models. In principle, given a sequence of tokens ω1 . . . ωt−1, the LLM generates ωt

from a multinomial distribution Pt over the dictionaryW , where Pt, the Next Token Distribution

(NTP) is allowed to depend on previous tokens ω1, . . . , ωt−1. Then, watermarking is used to embed

statistical signals into LLM-generated tokens, which remain largely unnoticeable without additional

information. The key insight behind watermark-based detection schemes is the use of the underlying

randomness of LLM-generated outputs by incorporating pseudo-randomness into the text-generation

process. When a third-party user publishes text potentially containing LLM-generated outputs with

watermarks, the coupling between the LLM-generated text and the pseudo-random numbers serves

as a signal that can be used for detecting the watermark. Crucially, the properties of watermarks

allow the user to detect machine-generated texts without requiring knowledge of any particular

properties of the text or the LLM. For example, it is conceivable that the academic institution

penalizing LLM-generated texts may gain access to the pseudo-random numbers from the particular

LLM they deploy in their network system used by the students. We emphasize that the knowledge

of these pseudo-random numbers is imperative for the detection mechanism to work, making the

effect of watermarking untraceable to general users, who usually do not have access to such “keys”.

This usefulness has stimulated a plethora of research proposing myriad watermarking schemes

(Kirchenbauer et al. 2024, Fernandez et al. 2023, Golowich & Moitra 2024, Hu et al. 2024, Wu

et al. 2024, Zhao et al. 2025, Zhao, Ananth, Li & Wang 2024, Liu & Bu 2024, Zhu et al. 2024).

Concurrently, much attention has landed on the pursuit of efficient, statistically valid detection
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schemes (Li, Ruan, Wang, Long & Su 2025b, Kuditipudi et al. 2024, Cai et al. 2024, Huang et al.

2023, Li, Ruan, Wang, Long & Su 2025a, Cai et al. 2025), as well as on the more general problems

of machine-generated text detection or model equality testing (Lavergne et al. 2008, Solaiman

et al. 2019, Gehrmann et al. 2019, Su et al. 2023, Mitchell et al. 2023, Huang et al. 2023, Vasilatos

et al. 2023, Hans et al. 2024, Li, Ruan, Wang, Long & Su 2025b, Kuditipudi et al. 2024, Cai et al.

2024, Gao et al. 2025, Song et al. 2025, Radvand et al. 2025). These detection schemes usually

rely on the knowledge of the pseudo-random keys or deterministic hash functions to perform a

composite-vs-composite test of hypotheses: H0 : the entire text ω1 . . . ωn is un-watermarked (i.e.

human generated), vs H1 : the entire text is watermarked or H ′
1 : the text contains watermarked

segments (Mitchell et al. 2023, Bao et al. 2024, Li, Ruan, Wang, Long & Su 2025b, Zhou et al.

2025). Usually, such tests depend on the pivot statistic Yt s, which are formed from the token ωt and

the watermarking keys ζt. The virtues of the pivot statistics stem from their ancillarity with respect

to the next token distributions {Pt}, allowing it to be used without requiring specific knowledge

about the LLM architecture or its NTP distributions. Recent advances in this direction have started to

shed light on detecting more sophisticated modifications of watermarking by allowing arbitrary data

misappropriation Cai et al. (2025) and arbitrary modifications such as deletion and replacements Li,

Ruan, Wang, Long & Su (2025a), Xie et al. (2025). However, somewhat curiously, the relatively

harder and more fine-grained problem of precisely localizing the watermarked segments from an

input text has received only sparse attention. Apart from WinMax (Kirchenbauer et al. 2024),

which focuses only on Red-Green watermarking, to the best of our knowledge, the only algorithms

tackling the segmentation problem in its generality are Li et al. (2024), Pan et al. (2025) and Zhao,

Liao, Wang & Li (2024). Most of these algorithms are prohibitively slow and thus unsuited for long

texts. Moreover, to the best of our knowledge, no such algorithm designed to efficiently identify

multiple watermarked segments has sufficient theoretical validity. This gap in the literature is also

pointed out by Li, Wen, He, Wu, Long & Su (2025).
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In this paper, we propose WISER (Watermark Identification via Segmenting Epidemic Regions):

a first-of-its-kind computationally efficient and provably consistent algorithm to locate multiple

watermarked segments from mixed-source input texts. Our method is inspired from the classical

notion of epidemic change-points; this perspective is instrumental for both the theoretical validity

and computational efficiency of our algorithm. We summarize our main contributions as follows.

Firstly, in §2, we introduce a novel, epidemic change-point perspective on the watermark segmenta-

tion problem by exploiting an inherent property of the watermarking schemes. In particular, research

dealing with testing for the existence of watermarks essentially hinges upon a score function h

applied over the pivot statistics Yt, which usually has the property that E[h(Yt)] is much larger for

the watermarked tokens than for un-watermarked ones. This property can be visualized in Figure

1, and is elaborated on with examples in Section 2.1. While this elevated alternatives property

(Assumption 2.2) is crucial in achieving significant power for the testing problems, it has not been

formally described and analyzed in this context. However, for a localization problem, this property

readily relates it to a separate classical problem of epidemic change-point detection. Roughly

speaking, an epidemic change-point refers to a situation where a stochastic process deviates in

one of its features in an interval and returns to the baseline. In simple words, the changes in the

related features occur in interval patches, and outside these patches the process behaves in an i.i.d.

or stationary fashion. Since the score-appended pivot-statistics h(Xt) exhibit very similar behavior

in watermarked tokens, this interpretation of patches as epidemic change-point intervals enables

us to re-purpose some of the classical insights of change-point literature into a state-of-the-art

algorithm to provably locate them and thus solve a modern problem in the area of AI-moderation.

Even though Li et al. (2024), Li, Liu & Li (2025) also relate the watermark segmentation problem

to a change-point localization problem, their insights are rather limited, since they identify the

end-points of watermarked patches as distinct change-points, which does not respect the nature of

watermarked tokens appearing as intervals.
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Figure 1: (Left) A text with watermarked tokens 70-100. (Right) The corresponding plot of pivot
statistics vs. token.

Secondly, in §4, we transform the epidemic change-point insight into a tractable algorithm, tuned to

the peculiarities of the watermarking framework. Specifically, in contrast to the usual setting of

independent or stationary random variables in the epidemic change-point literature (Levin & Kline

1985, Hušková & Slabý 1995, Chen et al. 2016), we work with a highly non-stationary setting,

devoid of any direct regularity assumption for watermarked-tokens. Motivated by several studies

on irregular change-point analysis (Kley et al. 2024), we devise the WISER algorithm, which is

valid irrespective of the LLMs or NTPs. The algorithm is illustrated schematically in Figure 2, and

also discussed in the Appendix §A. In principle, our algorithm is simple to describe. The epidemic

interpretation produces a natural estimate for the case of a single watermarked segment, and the

general case of multiple watermarked segments can then be dealt with by appropriately restricting

the search spaces for each of these segments. The number of such segments is estimated by a

series of carefully orchestrated steps (such as block-based tests, and a threshold-based deletion of

false-positive blocks), and we further restrict the search space is ensured to reduce the computational

burden. To summarize, our algorithm simply works with the pivot statistics and the elevated alterna-

tives property, and brings insights from the epidemic change-point theory to tackle the potentially

arbitrary non-stationary dependence typically displayed by the pivot statistics corresponding to the

watermarked tokens.

Thirdly, in §4 we rigorously establish the theoretical validity of our algorithm in very general

scenarios. The theoretical validity of the WISER segmentation algorithm arises as an automatic

consequence of our perspective. Additionally, we motivate the local estimate used in the last
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stage of WISER by proving in Theorem 3.1 that it is consistent in the single watermarked-segment

case. To the best of our knowledge, WISER is the first watermark segmentation algorithm with

complete theoretical guarantees in the most general case. It is important to note that the regime of

non-stationarity in one or more epidemic patches is different from the usual multiple change-point

regime with an even number of breakpoints due to how we perceive signal and noise in a statistical

detection problem. Moreover, as we already mentioned above, there is inherent irregularity intrinsic

owing to how watermarked texts are generated. Our theoretical results settle these issues in a

comprehensive fashion. Part of our proof techniques are based on moment and cumulant generating

functions, as well as Danskin (1967)’s results, which are, novel to both change-point or watermark

literature to the best of our knowledge and these tools can be of independent interest.

Finally, the ingenuity of our algorithm lies not only in its amalgamation of different ideas from

statistics, but also in its practicality. In the numerical experiments §5-6, the theoretical guarantees

are reflected in WISER’s superiority over other competitive methods across different watermarking

schemes and different language models. In the Appendix §C, we provide additional and extensive

numerical experiments to further reinforce the effectiveness of our algorithm, as well as highlighting

the novelty of our algorithm compared to the other algorithms in the literature. Another key aspect

of its enhanced performance is its speed. WISER is specifically designed with many localized steps

that reduce its run-time, thereby making it, to the best of our knowledge, the only O(n) watermark

segmentation algorithm with provable theoretical guarantees.

1.1 Notations

We delineate some of the notations to be used throughout this paper. The set {1, . . . , n} is denoted

by [n]. The d-dimensional Euclidean space is Rd. For a vector a ∈ Rd, |a| denotes its Euclidean

norm. For a random vector X ∈ Rd, we denote ∥X∥ :=
√
E[|X|2]. Throughout the paper, we

use the usual Landau notation O(·), o(·) for sequences of real numbers. The analogous stochastic
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versions, corresponding to stochastic boundedness and in-probability, convergence, are denoted by

OP(·) and oP(·) respectively. We also write an ≲ bn if an ≤ Cbn for some constant C > 0, and

an ≍ bn if C1bn ≤ an ≤ C2bn for some constants C1, C2 > 0. Finally, L(X) denotes the law of X .

2 Watermark segmentation: epidemic change-point perspective

Before we introduce our novel perspective in the context of locating watermarked segments, it is

instrumental to establish a consistent framework of watermarking in LLM-generated texts. Let

W denote the dictionary, enumerated as 1, 2, . . . , |W|. Given a text input in a tokenized form

ω1 . . . ωt−1, a watermarked LLM generates the next token ωt in an autoregressive manner as

ωt = S(Pt, ζt), where Pt = (Pt,w)|W|
w=1 is the next token probability (NTP) distribution at step t; S is

a deterministic decoder function, and ζt is the pseudo-random variable at t. We grant Assumption

2.1 for the ζt’s.

Assumption 2.1. For any text ω1:n, there exists corresponding pseudo-random variables ζ1:n

available to the verifier, such that if the token ωt at step t is un-watermarked, then ωt and ζt are

independent conditional on ω1:(t−1).

It may seem that this assumption invalidates human edits after the LLM generates a text. However,

in Appendix §B, we discuss how Assumption 2.1 applies to the mixed-source texts allowing for

human edits.

2.1 Pivot statistics and elevated alternatives

Note that, a text ω1:n with K disjoint watermarked intervals I1, . . . , IK , Ij ⊂ [n] for j ∈ [K], can

be modeled as

wt ∼


Pt, t /∈ I0 := ∪K

l=1Ik,

S(Pt, ζt), otherwise,

t = 1, 2, . . . , n. (1)
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We are interested in the statistical problem of estimating the individual intervals I1, . . . , IK as well

as K. Before proceeding further, it is appropriate to formally introduce the notion of pivot statistics.

Definition 2.1. Y (ω, ζ) is called a pivot statistic if L(Y ) is same for all ω ∈ W .

Pivot statistic has been extremely effective in providing statistically valid testing strategies for the

existence of watermarks in mixed-source texts (Li, Ruan, Wang, Long & Su 2025b,a, Cai et al. 2024),

however, in what follows, we will demonstrate their effectiveness in aiding a localization algorithm.

This effectiveness is a result of a simple property of the pivot statistics; they metamorphose the

conditional independence of ωt and ζt for un-watermarked tokens into Pt-independent distributions.

Formally, this property is described in the following result.

Lemma 2.2. If S denotes the set of un-watermarked tokens, then {Yt}t∈S are i.i.d.

This ancillarity is heavily used in all the available statistical analysis of watermarked schemes;

nevertheless, for the sake of completion we provide a proof in Appendix §D.3. Lemma 2.2 enables

us to use the notation µ0 := E0[Y (ω, ζ)] as the expectation of the pivot statistic Y when the token

ω ∼ P is not watermarked; on the other hand, E1,P [Y (ω, ζ)] will denote expectation with respect to

the randomness of ζ (i.e. conditional on P ) when ω is watermarked according to (S, ζ)-mechanism.

Finally, we denote Yt := Yt(ωt, ζt). Note that since Yt is a pivot statistic, so is h(Yt) for any

score function h : R → R. Usual tests for watermark detection look at
∑n

t=1 h(Yt) as a statistic

for a one-sided test, and put considerable effort into constructing an effective score function h

(Kirchenbauer et al. 2024, Zhao, Liao, Wang & Li 2024, Li, Ruan, Wang, Long & Su 2025b, Cai

et al. 2025). Intrinsic to this construction, even though never explicitly stated, is the assumption

that E1,P [h(Y )] is usually larger than µ0 for any possible NTP distribution P . This hypothesis of

“elevated alternatives" can also be empirically viewed in Figure 1.

We formalize this observation with the following hypothesis.
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Assumption 2.2 (Elevated Alternatives Hypothesis). Assume that the next token distribution (NTP)

P belongs to a distribution class P . Then, there exists d > 0 such that infP ∈P E1,P [h(Y )] ≥

µ0 + d, where E1,P (·) = E1[·|P ] denotes the unknown distribution of h(Y ) when watermarking is

implemented on the NTP P ∈ P via S(P, ·).

This assumption entails that the pivot statistics is effective conditional on any possible NTP from

the class P , ruling out trivial cases such as Y (ω, ζ) ≡ ζ. Most standard watermarking schemes

satisfy Assumption 2.2; see the following for some concrete examples.

2.1.1 Examples to Assumption 2.2

In this section, we justify the elevated alternative hypothesis Assumption 2.2 by illustrating its

occurrence through two popular watermarking schemes.

Example (Gumbel Watermark, Aaronson (2023)). Let ζ = (Uw)w∈W consist of |W| i.i.d. copies of

U(0, 1). The Gumbel watermark is implemented as:

Sgum(ζ, P ) := arg max
w∈W

log Uw

Pw

, (2)

The pivot statistic is taken as Yt = Ut,ωt , t ∈ [n]. From Proposition 1 in Appendix, when ∆ = 1/2,

infP ∈P∆ E1,P [h(Y )] ≥ ∑∞
n=1( 1

n
− 1

n+2), which, in light of h(Y ) ∼ Exp(1) entails that d ≥ 1/2.

Example (Inverse Transform Watermark, Kuditipudi et al. (2024)). Consider an NTP distribution

P and a permutation π : W 7→ S|W|, where S|W| is the group of permutations of {1, 2, . . . , |W|}.

Further consider the multinomial distribution {Pπ−1(w)}|W|
w=1. The CDF of this distribution takes the

form

F (x; π) =
∑

w′∈W
Pw′ · 1{π(w′)≤x}.
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Taking as input U ∼ U(0, 1), the generalized inverse of this CDF is defined as

F −1(U ; π) = min
{

i :
∑

w′∈W
Pw′ · 1{π(w′)≤i} ≥ U

}
,

which, under the H0 of no watermark, follows the multinomial distribution P after applying the

permutation π. The inverse transform watermark is defined as the decoder:

S inv(P, ζ) := π−1
(
F −1(U ; π)

)
.

Lemma 4.1 of Li, Ruan, Wang, Long & Su (2025b) indicates that under the alternative, the distri-

bution of Sinv is intricately inter-related with the NTP P . To make the verification of Assumption

2.2 tractable, we impose a few assumptions. Assume |W| → ∞, and with Pt,(i) denoting the i-th

largest co-ordinate of the probability vector Pt,(i) for every token t and i ∈ [|W|], we also assume

lim
|W|→∞

Pt,(1) = 1−∆ and lim
|W|→∞

log |W| · Pt,(2) = 0.

Consider the pivot statistic

Yt =
∣∣∣Ut − η(πt(wt))

∣∣∣, η(i) := i− 1
|W| − 1 .

Under Theorem 4.1 of Li, Ruan, Wang, Long & Su (2025b), E1[1− Y ] = 2+∆
3 , and E0[1− Y ] = 2

3 .

Therefore, here d = ∆
3 .

To summarize, the pivot statistics Yt has a mean level µ0 when the token ωt is un-watermarked;

on the other hand, we expect the pivot statistics to take comparatively larger values inside the

watermarked segments. Interestingly, this observation establishes a ready-made connection to the

notion of “epidemic change-points”, sporadically explored in the classical time-series literature for
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the past few decades. We discuss this novel perspective in the following section.

2.2 Watermarked interval in the context of epidemic change-point

We start with an epidemic changepoint model with a single change. The simplest and yet the

most popular formulation of a ‘mean-shift’ epidemic model is as follows. Consider the time-series

Xi = µi + Zi, where Zi is mean-zero stationary process and

µi = µ if i ∈ {1, · · · , p} ∪ {q + 1, · · · , n} and µi = µ + d if i ∈ {p + 1, · · · , q} (3)

With K many true patches, this model reads as follows. For 1 < p1 < q1 < p2 · · · < qk < n,

µi =


µ + dk, i ∈ {pk + 1, . . . , qk} for some k = 1, . . . , K,

µ, otherwise,

i = 1, . . . , n. (4)

Epidemic changepoint is not new by any means. This framework originated with Levin & Kline

(1985), who studied the testing for the existence of such epidemic patches for epidemiology

applications, with a more comprehensive discussion in Yao (1993), Inclán & Tiao (1994). Later

on, Hušková (1995), Csörgő & Horváth (1997), Chen et al. (2016) have discussed consistency,

asymptotic theory as well as statistical powers of these epidemic estimators and accompanying

tests. Other related papers discussing inference tailored to epidemic alternatives can be found in

Račkauskas & Suquet (2004, 2006), Ning et al. (2012). Compared to the vast literature for usual

change-point analysis, the epidemic change-point literature has been quite sparse, and even then,

the focus has remained mostly on testing for the existence of such temporary departure rather than

on locating these patches with provable statistical guarantees. In particular, the testing problem

deals with the case d1 = d2 = · · · dK = 0. On the other hand, our work concerns simultaneously

estimating the number of true locations K and the corresponding patches (pi, qi). The literature

12



on localizing multiple epidemic patches is even sparse (Zhao & Yau 2021, Juodakis & Marsland

2023), and seems to focus only on the much restricted setting on independent Gaussian observations.

Moreover, as discussed in the Introduction as well, due to the nature of pivot statistics, we suffer from

a certain irregularity induced by the non-stationarity in mean of the pivot-statistics for watermarked

tokens. Therefore, any potential results or algorithms that might be obtained pertaining to model (3)

or (4), are not directly applicable here. Instead, invoking Assumption 2.2, we can only assume that

the means of the pivot statistics are separated from the null by at least some margin. This puts us in

a position to solve an epidemic mean-shift problem of a new kind, where we can solve the case of

localizing multiple patches accounting for this non-stationary departure in the mean of the pivot

statistic.

Very recently Kley et al. (2024) proposed usual change-point detection under the presence of such

irregular signals. Concretely, for noisy data of the form Xt = µt + Zt, t = 1, . . . , n where µt

are means or signals and (Zt)t∈Z is a stationary mean-zero noise, they considered the following

hypothesis testing problem with irregular ‘non-constant-mean’ alternative:

H0 : µ1 = · · · = µn vs. H1 : ∃ τ ∈ {2, . . . , n}, d > 0 : µ1 = · · · = µτ−1, µτ , . . . , µn ≥ µ1 + d.

They also proposed an estimation procedure for the location parameter τ . In this work, we extend

their estimators to the epidemic alternative with properties dictated by Assumption 2.2, and provide

guarantees of accurate localization. The analysis in Kley et al. (2024) is restricted to single change-

point whereas the scenario of multiple patches with irregular signal within it comes naturally in

our context. Moreover, the intrinsic dependence introduced by the context of how an LLM token

sequence is generated also makes our premise for the error specification quite novel and thus brings

out significant technical challenges. To address these challenges, we begin with a simpler problem

segmenting of only one watermarked patch in §3.
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3 Single watermarked patch

In this section, we underlay the development of our algorithm by starting with the simpler case of

localizing a single watermarked patch. In particular, we propose an estimator to localize a single

watermarked segment inside a text, and establish its theoretical consistency with finite sample

results. Building on this estimate, in §4 we will formally propose the WISER algorithm to detect

multiple patches.

We work with the pivot statistics Xt = h(Yt). Recall Lemma 2.2, the notation µ0 = E0Xt, and

Assumption 2.2. The pivot statistics are constructed so that under unwatermarked tokens, they

behave like i.i.d. observations with a stable null mean µ0. Under watermarking, however, the mean

of Xt inside the true interval I0 is not assumed constant: token-by-token perturbations can make it

vary arbitrarily, and all we rely on is an elevated–alternatives condition, as Assumption 2.2 describes,

infP ∈P E1,P [h(Y )] ≥ µ0 + d. Because of this irregularity, classical epidemic/CUSUM-type scans

that presume a constant shift on the affected block are not directly applicable. Instead, we flip the

viewpoint and search for an interval whose removal makes the remaining data look as close as

possible to the null; this leads us to an initial interval estimator defined by minimizing a biased

outside-of-interval surplus.

In this spirit, let d̃ be such that there exists ρ ∈ (0, 1) satisfying d > 2ρd̃. Based on our discussion

above, we adapt the estimator from Kley et al. (2024) for our particular ‘epidemic’ setting.

Î = arg min
s,t∈[n]

∑
k /∈[s,t]

(Xk − µ0 − ρd̃). (5)

The role of the bias term ρd̃ is crucial. By subtracting a positive buffer, we make each null token

outside any candidate interval contribute a negative expected amount −ρd̃, while any missed

watermarked token left outside contributes at least d − ρd̃, which is positive when the signal
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dominates the buffer. Consequently, underestimating the interval leaves elevated points outside

and increases the objective, whereas overestimating it removes extra null points and loses many

negative contributions, also increasing the objective; the minimizer is therefore driven toward the

smallest interval that excises all elevated tokens. Since the true elevation d is unknown, we use

a proxy d̃ together with a tuning factor ρ ∈ (0, 1) to remain conservative: d̃ provides a scale for

the elevation we expect, and ρ controls the tradeoff between being too permissive (small ρ, risking

overestimation from null fluctuations) and too strict (large ρ, risking loss of separation if d is not

sufficiently bigger than ρd̃).

The following theorem analyzes its convergence properties for the case of a single, uninterrupted

watermarked region. Subsequently, we discuss some of its connotations in successive remarks.

Theorem 3.1. Let {Xt}n
t=1 := {h(Yt)}n

t=1 be the pivot statistics based on the given input text, and

assume that I0 ⊂ {1, . . . , n} is the only watermarked interval. Grant Assumption 2.2. Denote

εt =


Xt − µ0, t /∈ I0,

Xt − µt, µt := E1,Pt [Xt], t ∈ I0.

Suppose the class of distributions P is closed and compact, and there exists η > 0 such that

supP ∈P E1,P [exp(η|ε|)] < ∞. Moreover, assume that min{Var0(ε), supP Var1,P (ε)} > 0. Con-

sider the estimate (5) with ρ and d̃ satisfying d > 2ρd̃. If there exists a constant c > 0 such that

d ≥ c, then |Î∆I0| = OP((ρd̃)−1
)
. Here ∆ is the symmetric difference operator and OP hides

constants independent of n, d̃, ρ, and µ0.

The O((̃ρd̃)−1) rate can further be sharpened to O((̃ρd̃)−2) under a local sub-Gaussianity condition

(see Proposition D.2 in the Appendix §D ). In fact, under very mild conditions, Theorem 3.1 already

tackles a more general scenario compared to the only other theoretical result available in a similar

context (Li et al. 2024). In contrast to a general watermarked patch, Li et al. (2024) considered

15



a specialized scenario, where only the first half of the text till an arbitrary point is watermarked,

reducing the problem to a classical change-point setting.

The parameter d̃ serves as the signal strength in the convergence diagnostics of Î . It allows Î

to look for intervals such that the d̃-biased mean outside that interval is minimized. However,

due to the restriction d > 2ρd̃, since the minimum separation d in Assumption 4.1 is typically

unknown, it cannot be used directly. In most cases (see examples in §2.1.1), a distribution-

dependent lower bound dL ≤ d may be available, but relying on d̃ = dL often sacrifices power,

as inft∈[n] E1,Pt [Xt − µ0] is usually much larger. Thus, a key step in practice is a data-driven yet

valid choice of d̃, which we discuss in §4. The tuning parameter ρ adjusts the impact of d̃ and

mitigates small errors in its selection. Choosing ρ ≈ 0 is undesirable, as it causes Î to overestimate

I due to fluctuations above µ0 under the null. Conversely, setting ρ ≈ 1 can violate the requirement

d > 2ρd̃ when d̃ is large. Empirically, ρ ∈ [0.1, 0.5] provides robust performance, and we revisit

these choices in our discussion of WISER as well as the ablation studies in Appendix §C.3.

Remark 3.1 (Connection with other performance metric). Even though Theorem 3.1 controls the

estimation error in terms of symmetric difference between estimated and true watermarked patches

Î and I respectively, it is straightforward to transform this result in terms of the more familiar

Intersection-Over-Union metric IOU(I, Î) = |I∩ Î|/|I∪ Î| as 1− IOU(I, Î) = |I∆Î|
|I∪Î| = OP

(
1

|I|ρd̃

)
.

As the text size increases (n→∞), if |I| = O(1), then the number of un-watermarked tokens is

too large, overpowering the signal from the watermarked tokens. Under this “heavy-edit" regime,

no non-trivial test statistic can differentiate between H0 : the entire text ω1:n is un-watermarked (i.e.,

human-generated) and H1 : the entire text ω1:n is watermarked, with reasonable power (Li, Wen, He,

Wu, Long & Su 2025). The estimation being a harder problem than testing, it is therefore reasonable

to assume |I| → ∞ as n→∞. Therefore, Theorem 3.1 essentially entails that IOU(I, Î)→ 1 as

n→∞.
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Despite the attractive theoretical properties of Î given in (5), notwithstanding the yet unclear choice

of d̃, there are a couple of practical roadblocks to deploying Î . Firstly, Î has a computational

complexity of O(n2), which is quite prohibitive for a large body of text one usually encounters.

Secondly, it is not straightforward as to how Î can be generalized to localize multiple watermarked

segments. We answer these questions by proposing our WISER algorithm.

4 WISER segmenting multiple watermarked patches

The main motivation behind our proposed algorithm WISER is to use the estimator Î on localized

disjoint intervals that are more-or-less guaranteed to contain the true watermarked segments. Such

intervals with guarantees are usually recovered as a consequence of some first-stage screening. For

the convenience of readers, a schematic diagram of WISER containing the key steps, is illustrated

in Figure 2. The detailed algorithm can be found in Appendix §A.

Figure 2: WISER in action with key steps.

Subsequently, we make a mild assumption that the true watermarked segments have a minimum
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length, and are also well-separated to be considered as distinct segments. Formally, for two disjoint

intervals I1 = (I1,L, I1,R) and I2 = (I2,L, I2,R), let d(I1, I2) := min{|I1,L − I2,R|, |I1,R − I2,L|}.

Assumption 4.1 (Minimum separation). Let K be the number of true watermarked segments, with

the segments themselves denoted by Ij, j ∈ [K]. Then there exists a constant C0 > 0, such that

mink∈[K]{|Ik| ∧ d(Ik, Ik−1)} ≥ C0n
υ log n for some υ > 0.

Remark 4.1. In most practical scenarios, where a test for the existence of the watermark has

sufficient power, the size of the watermarked patches will be significant, or should have high entropy.

In fact, most of the theoretical literature in LLM watermarking (Li, Ruan, Wang, Long & Su 2025b,

Cai et al. 2025, Christ et al. 2024, Li et al. 2024, Li, Ruan, Wang, Long & Su 2025a) assumes that

either the entire text, or at least a constant proportion of the text, is watermarked.

Assumption 4.1 is mild in the sense it allows for vanishing watermarked patches in the [0, 1] scale.

Mathematically, we only require the minimum size of the watermarked patches (as well as the

minimum separation) to be grow only polynomially with the number of tokens n. These assumptions

are ubiquitous in the analysis of multiple change-point (Fryzlewicz 2014, Cho 2016, Bai et al. 2023,

Safikhani & Shojaie 2022, Frick et al. 2014), as well as in the relatively much sparser literature of

analysis of multiple epidemic patches (Zhao & Yau 2021, Juodakis & Marsland 2023).

In what follows, we explain the step-by-step rationale behind the algorithm. For clarity, we ignore

the niceties of ⌊·⌋’s and ⌈·⌉’s. Suppose, for convenience, that υ = 1/2.

• Blocking stage. For convenience let b =
√

n. In the first stage, we partition the data into
√

n

consecutive blocks of size
√

n. Let the thresholdQ being given as some quantile of the distribution

of the maximum of the block-sums of the pivot statistics under the null of no watermarking.

Then, among the blocks, we retain only those blocks for which the corresponding realized sum

of pivot statistics exceeds Q. Typically, to avoid multiple testing issues, Q is chosen as the

(1− α)-quantile of the null (i.e., when there is no watermarking in the entire text) distribution of
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the maximum block sum over all n
b

blocks.

• Discarding stage. If α is too small, we risk selecting many spurious blocks; if α is too large,

we lose out on power in the first stage itself, failing to accurately identify even the number of

watermarked segments. As a calibration step, we form connected components based on selected

blocks, and then remove any of the intervals having length smaller than c
√

log n, c > 0. The

intuition is as follows: the blocks corresponding to the un-watermarked region between them

should not be selected; else we lose the localization we are aiming for before implementing

Î piece-meal. Moreover, under Assumption 4.1, by definition of Q,
√

log n successive un-

watermarked blocks will have sums exceeding Q only with vanishing probability. Therefore,

any connected interval of selected blocks from the first stage, with length at most c
√

log n, must

necessarily be spurious.

• Enlargement stage. The above two steps ensure K̂ = K with probability approaching 1. Due

to Assumption 4.1, each of the watermarked segments must correspond to exactly one of the

remaining connected regions. Moreover, these intervals are almost accurate estimates of the true

segments, but for some additional watermarked regions that might have had a non-null intersection

with the discarded blocks. However, from the particular discarding procedure, we know that these

additional regions must account for a size at most of the order of
√

n. Therefore, it makes sense

to enlarge the connected intervals by c
√

n for some constant c > 0, so that now it covers the

corresponding true watermarked segments with high probability. These enlarged intervals Dj’s

remain disjoint with high probability due to Assumption 4.1, and are therefore each amenable to

(5) to yield Îj’s.

• Estimating d̃. The crucial component behind Îj is d̃, which we estimate now. In fact, we plug

in the sample mean of the pivot statistics over ∪K̂
j=1Dj as d̃. Since |Dj∆Ij| ≪ |Ij| with high

probability, hence d̃ is essentially equal to (∑j |Ij|)−1∑
j∈[K],t∈Ij

(Xt − µ0), which estimates d

with some positive bias. The ρ parameter can be used to calibrate it so that d > 2ρd̃. Typically
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we choose ρ ∈ (0.1, 0.5). A smaller value of ρ maintains validity of the procedure but sacrifices

the detection accuracy. In Appendix §C.3 we provide an ablation study to discuss the choices of

both the parameters b and ρ.

• Reducing computational cost. We alleviate the increased computational aspect of a naive

implementation of (5) by leveraging additional information from the screening stage to reduce

the search space. Indeed, due to our blocking and discarding steps, it can be guaranteed with

high probability that, for each j ∈ [K], Dj,L is at most ≍
√

n distance apart from Ij,L; similarly

Dj,R is also at most ≍
√

n distance apart from Ij,R. Therefore, from Dj we can produce search

intervals Lj , Rj of lengths ≍ n1/2 such that Ij,L ∈ Lj ad Ij,R ∈ Rj with high probability, and

restrict the search to s ∈ Lj, t ∈ Rj . Consequently, now each implementation of this modified

(5) (see Figure 2) takes O((n1/2)2) = O(n) amount of computational time, leading to a speed-up

while maintaining theoretical validity.

The following result summarizes these insights into a formal consistency guarantee.

Theorem 4.1. Assume that the null distribution of the pivot statistic is absolutely continuous with

respect to the Lebesgue measure. Let the number of watermarked intervals K be bounded, and

Assumption 4.1 be granted for the watermarked intervals Ik, k ∈ [K]. Fix α ∈ (0, 1), and recall

the quantities defined in WISER described in Figure 2. Suppose that E0[|X − µ0|p] < ∞ for

some p ≥ 2, and let the block length b = bn satisfy bn = O(nυ), and bn/n1/p → ∞, where

υ > 1/p is same as in Assumption 4.1. Moreover, suppose the threshold Q = Qn is selected

so that P0(max1≤k≤⌈n/b⌉ Sk > Q) = α. Finally, assume d ≥ c for some constant c > 0, and

supP ∈P E1,P [X] <∞, and assume there exists τ > 0 such that

κ := inf
θ≥0

θ(µ0 + τd) + log sup
P

E1,p[exp(−θX)] < 0. (6)

Suppose ε > 0 and d ≥ c be given for some constant c > 0. Then, under the assumptions of
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Theorem 3.1, there exist Mε ∈ R+, independent of n, K, and d, and ρ > 0, such that WISER

applied with hyper-parameters b and ρ satisfies

lim inf
n→∞

P
(
K̂ = K, max

k∈[K]
|Îk∆Ik| < Mεd

−1
)
≥ 1− ε. (7)

Remark 4.2 (Effect of Assumption 4.1). The key assumption behind the validity of WISER is that if

the pivot distribution under null has at least p moments, then the minimum length of the watermarked

intervals, as well as the minimum separation between them, should be at least n1/p; in that case,

WISER guarantees consistent segmentation as long as the block-length is small enough. In fact,

for most watermarking schemes in use, the pivot distribution under null will have infinitely many

moments, enabling us to take as big a p as possible. Thus, our Assumption 4.1 can be understood to

be quite mild, much like the logarithmic separation conditions in multiple change-point detection

literature (e.g., Assumption 3.3 in Fryzlewicz (2014), Assumption (B2) in Cho (2016), Assumption

(H1’) in Bai et al. (2023), etc). However, we remark that the aforementioned separation conditions

from change-point literature are often proposed under Gaussianity, or under specific dependency

structures, none of which hold true for the watermarked interval in our set-up.

Remark 4.3 (Discussion on Condition (6)). We also briefly discuss arguably the only technical

condition (6) in Theorem 4.1. This can be construed as a Donsker-Varadhan strengthened version of

Assumption 2.2. For an appropriate choice of the score function h and some NTP distribution P ⋆

depending on P , the Donsker Varadhan representation (Donsker & Varadhan 1983) entails

inf
θ≥0

θµ0 + log sup
P ∈P

E1,p[exp(−θX)] = −DKL(L0(X),L1,P ⋆(X)),

where DKL denotes the Kullback-Leibler divergence, L0 denotes the law of un-watermarked pivot

statistic, and L1,P ⋆ denotes the law of watermarked pivot statistic when the NTP is P ⋆. In light of
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this, κ lifts the minimum separation between the un-watermarked and watermarked distributions

into a gap between the cumulant functions, and can therefore be understood to be mild. Equation (6)

establishes a weak uniform control over the behavior of pivot statistics under watermarked segments.

This allows us to rigorously bypass the possibly arbitrary and strong dependence across the pivot

statistics corresponding to watermarked tokens while deriving Theorem 4.1.

We reiterate that with any choice of bn = O(
√

n), WISER has a run-time only of approximately

O(n) ignoring log factors. This, to the best of our knowledge, is among the least computationally

expensive algorithms available in the literature. In view of its theoretical validity under very

general conditions, this makes it a useful tool for practical applications. In general, for consistent

segmentation, the block lengths only need to satisfy n1/p ≪ bn ≪ nν , where ν is as in Assumption

4.1, and the pivot statistics has at least p finite moments. In Appendix §C.3, we undertake a detailed

ablation study that deals with the practical choice of bn.

5 Simulation Studies

Building on the theoretical results developed in the preceding sections, we now present a series of

simulation experiments designed to stress-test the performance guarantee of the proposed WISER

method, under deviations from the idealized assumptions. To this end, we consider three distinct

simulation scenarios as follows. In §5.1, we aim to uncover the effect of temporal dependence on the

performance of the WISER algorithm. Moving on, §5.2 examines the role of Assumption 2.2 on the

performance of the algorithm. Finally, in §5.3, we evaluate WISER on its ability to detect multiple

watermarked segments based on simulated text, which then serves as the closest approximation

to the additional experiments on real-world scenarios discussed later in §6. For each of these

experiments, we keep the vocabulary size fixed at |W| = 1000 unless otherwise specified and

perform 5000 replications.
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5.1 Effect of temporal dependence on WISER

We begin by analyzing how temporal dependence in the underlying next-token prediction (NTP)

distributions affects detection accuracy. For each of the 5000 replications, we generate a sequence

of NTP distributions {Pt}T
t=1 according to

Pt(w) = ezt(w)∑
w∈W ezt(w) , zt(w) =

√
ϕzt−1(w) +

√
1− ϕσt(w), t = 1, 2, . . . , w ∈ W ,

where ϕ is the auto-correlation coefficient ranging from 0 to 1, and σt(w)’s are independent,

identically distributed logits generated from a spiked-probability distribution described by

Pt(w) = (1−∆t)1{w=w∗
t } + ∆t

|W| − 11{w ̸=w∗
t }

where w∗
t ∼ Uniform(W) and ∆t ∼ U(10−3, 0.5). Note that ϕ = 0 recovers the case where

each NTP is generated as an independent spiked distribution, which is equivalent to the scenario

considered by Li, Ruan, Wang, Long & Su (2025b).

For each replication, we generate a text of length n = 500, watermark the interval (50, 300) under

various schemes, and compute the resulting IOU of the intervals detected by WISER. The results

are summarized in Figure 3. Overall, WISER is remarkably stable across a broad range of temporal

dependencies, except in two cases: (i) ϕ = 1, and (ii) red-green watermark scheme with smaller

values of ϕ.

In the extreme case ϕ = 1, all NTP distributions {Pt} collapse to the initial spiked distribution

P0. Because of the spiked-nature of P0, a decoding (or sampling) from this model produces nearly

deterministic text consisting almost entirely of the token w∗
0. Therefore, watermarking has virtually

no opportunity to influence the output, because deviations from w∗
0 occur only through extremely

low-probability events. This makes it extremely difficult for any detection algorithm to distinguish
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Figure 3: IOU of WISER algorithm for different levels of correlation in the token generation process
given in simulation scenario of §5.1

between watermarked and unwatermarked cases. Also, in this degenerate case, because of the

deterministic nature of the generated text, the variance min{Var0(ϵ), supP Var1,P (ϵ)} reduces to

almost zero, violating the assumptions of Theorem 3.1.

On the other extreme, when ϕ = 0, each spiked distributions are independently generated, producing

the maximum probability at different tokens. The red-green scheme perturbs logits by adding a

bias only on the tokens from the green list, but this influence is mitigated by the large and rapidly

changing spikes. Thus, watermarked and unwatermarked texts become nearly indistinguishable.

5.2 Effect of Assumption 2.2 on WISER

In order to properly characterize the importance of the elevated mean of pivot statistics for wa-

termarked texts, we consider two different simulation experiments. In the first experiment, we

watermark a single interval (0.3n, 0.7n) within a text of length n using the red-green scheme. We

vary the watermark strength by setting the logit bias δ ∈ 1.5, 2.0, . . . , 3.5

In the first one, we apply the red-green watermark on a single interval (0.3n, 0.7n) for a n-length

text, with choices of δ ∈ {1.5, 2, . . . , 3.5}, where δ is the bias added to the logit of the tokens from
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the green list. The corresponding IOU values for WISER are shown on the top panel of Figure 4.

Figure 4: IOU of WISER algorithm across different length texts (Top) for different levels of δ
in Red-green watermarking; (Bottom) for different levels of d as in Assumption 2.2 for Gumbel
watermarking scheme. X-axis is in log-scale for both plots.

On the other hand, such control of the strength of the watermarking is not possible for the Gumbel

watermarking scheme. Therefore, as an illustration, we perform another simulation study by directly

generating the pivot statistic without any explicit choice of the underlying watermarking scheme.

We choose the pivot statistic at the unwatermarked regions as i.i.d. exponentially distributed random

variables with mean 1 (note that, this is the distribution of the pivot statistic Yt corresponding to the

Gumbel watermarking scheme for the unwatermarked tokens), and choose the watermarked regions

as i.i.d. normal random variables with mean (1 + d) and variance 1. The results for this simulation

are illustrated on the bottom panel of Figure 4.
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Both the plots present in Figure 4 convey the asymptotic consistency of the algorithm, as well as

establish an empirical validity of the error bound given in Theorem 3.1. As d decreases, the problem

of watermark detection becomes more difficult, and a larger text length n is required to achieve the

same level of IOU.

5.3 Experiments on multiple watermarked segment detection

We next evaluate WISER in settings where multiple watermarked intervals appear within the text.

Consider text of length n containing three Gumbel-watermarked intervals: (0.35n − g, 0.45n −

g), (0.45n, 0.55n) and (0.55n + g, 0.65n + g). Here g denotes the gap between two successive

intervals, and is selected as g = (g̃ ∨ 2) ∧ 0.3n, where g̃ ∈ {n0.1, n0.15, . . . , n0.9, n0.95}.

Theorem 4.1 assures successful detection of the intervals by WISER algorithm whenever the gaps

satisfy d(Ik, Ik−1) ≍
√

n. Figure 5 displays, as a function of logn(d(Ik, Ik−1)) for different text

lengths n, the empirical probability that WISER correctly detects three watermarked intervals. As

expected, for each of the n considered here, the empirical detection probability rises sharply from 0

to 1 around logn(d(Ik, Ik−1)) ≈ 0.5, consistent with the theoretical results.

Figure 5: Empirical proportion of repetitions where WISER algorithm determines correct number
of intervals in simulation scenario §5.3 as a function of the logarithm of gap logn(d(Ik, Ik−1)).
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6 Numerical Experiments

While the previous section corroborates the theoretical results with numerical simulations, this

section aims to demonstrate the superiority of the proposed WISER method over existing state-of-

the-art (SOTA) algorithms, when applied in a real-world scenario. In §6.1, we compare its accuracy

against competitive methods on a benchmark dataset across multiple watermarking schemes, and

in §6.2, we assess its computational efficiency. Due to space constraints, we provide additional

numerical experiments in Appendix §C. We encourage the readers to check it out for more practical

insights, including, (i) a detailed explanation of the benefits of WISER over other SOTA algorithms

(§C.1.3), (ii) experiments quantifying the effect of watermark intensity and length across different

algorithms (§C.2), and (iii) an ablation study (§C.3) highlighting the stability of our method across

tuning parameter choices. The datasets and the large language models were acquired from the

open-source Huggingface library. All the relevant reproducible codes and figures can be found in

the anonymous Github repository.

6.1 Comparative performance of WISER

Within the relatively limited body of literature on the identification of watermarked segments

from mixed-source texts, Aligator (Zhao, Liao, Wang & Li 2024), SeedBS-NOT (Li et al.

2024), and Waterseeker (Pan et al. 2025) algorithms have emerged as the leading methods,

producing the most accurate results so far. For an extensive comparison, our experimental setup

involves completion of randomly selected 200 prompts from the Google C4 news dataset1. We

include language models spanning a wide range of scales: parameter sizes varying from 125 million

to 8 billion, and vocabulary sizes ranging in 32-262 thousands; for watermarking schemes, we

consider Gumbel-max trick (Aaronson 2023), Inverse transform (Kuditipudi et al. 2024), Red-green

watermark (Kirchenbauer et al. 2023), and Permute-and-Flip watermark (Zhao et al. 2025). In
1https://www.tensorflow.org/datasets/catalog/c4
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each scenario, the first 50 tokens of a news article have been provided as inputs to the language

models, and n = 500 output tokens are recorded. Among these 500 output tokens, there are two

watermarked segments: 100-200 and 325-400. The specific tuning parameter choices for WISER

are provided in §C. Table 1 showcases the results for the Gumbel watermarking scheme. It is evident

that WISER outperforms all the other algorithms across all the metrics for each model. The detailed

discussions, including the specific metrics used and additional results and insights, are provided in

Appendix §C.1.

Model Name Vocab Size Method IOU Precision Recall F1 RI MRI

facebook/opt-125m 50272

WISER 0.944 1.000 0.995 0.997 0.984 0.979
Aligator 0.734 0.382 0.988 0.551 0.939 0.931
Waterseeker 0.672 1.000 0.802 0.890 0.864 0.850
SeedBS-NOT 0.479 0.730 0.625 0.673 0.844 0.823

google/gemma-3-270m 262144

WISER 0.896 0.965 0.960 0.962 0.953 0.950
Aligator 0.506 0.234 0.912 0.373 0.881 0.861
Waterseeker 0.645 0.968 0.775 0.861 0.851 0.836
SeedBS-NOT 0.362 0.610 0.478 0.536 0.753 0.704

facebook/opt-1.3b 50272

WISER 0.934 1.000 0.995 0.997 0.981 0.974
Aligator 0.497 0.235 0.920 0.375 0.892 0.871
Waterseeker 0.657 1.000 0.808 0.893 0.860 0.846
SeedBS-NOT 0.360 0.618 0.465 0.531 0.766 0.731

princeton-nlp/Sheared-LLaMA-1.3B 32000

WISER 0.939 1.000 0.998 0.999 0.983 0.978
Aligator 0.459 0.236 0.912 0.376 0.886 0.862
Waterseeker 0.659 1.000 0.812 0.897 0.862 0.847
SeedBS-NOT 0.278 0.520 0.388 0.444 0.731 0.699

mistralai/Mistral-7B-v0.1 32000

WISER 0.909 1.000 0.998 0.999 0.975 0.961
Aligator 0.292 0.215 0.745 0.334 0.811 0.774
Waterseeker 0.621 1.000 0.765 0.867 0.840 0.824
SeedBS-NOT 0.240 0.442 0.320 0.371 0.657 0.593

meta-llama/Meta-Llama-3-8B 128256

WISER 0.926 1.000 0.988 0.994 0.977 0.975
Aligator 0.546 0.367 0.925 0.525 0.911 0.891
Waterseeker 0.570 1.000 0.720 0.837 0.814 0.791
SeedBS-NOT 0.379 0.620 0.515 0.563 0.778 0.741

Table 1: Results for Gumbel Watermarking

6.2 Time Comparison

As established in §4, the proposed WISER algorithm achieves a computational complexity of

≈ O(n). Figure 6 provides empirical evidence supporting this theoretical claim and, in addition,
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Figure 6: Time complexity (seconds) for various algorithms as a function of completion lengths (n). Y-axis
is in log-scale, with 95% confidence interval shown in shades.

compares the runtime behavior of WISER with other state-of-the-art methods. For this experiment,

we randomly create an n/6-length watermarked segment using the Gumbel-max trick with NTP gen-

erated by Google’s Gemma-3 model; block size was taken as ⌈
√

n⌉ and ρ = 0.1. The results clearly

indicate that WISER consistently outperforms competing approaches in terms of computational

efficiency, emerging as the fastest among all methods considered in this study.

7 Conclusion

In this paper, we introduced WISER, a first-of-its-kind algorithm for efficient and theoretically valid

segmentation of watermarked intervals in mixed-source texts. By framing watermark localization

as an epidemic change-point problem, we bridged a novel connection between classical statistical

theory and a modern challenge in generative AI, and also designed a linear time algorithm with

provable consistency guarantees, which were further confirmed by our extensive numerical experi-

ments. Beyond the findings of this paper, it is also crucial to theoretically investigate the robustness

of the proposed algorithm under human edits (Li, Ruan, Wang, Long & Su 2025a); as a roadmap,

we have already included some relevant discussion in Appendix §B. Its applicability to multimodal

(e.g., audio, image, video) settings (Qiu et al. 2024) also presents opportunities for future research.
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8 Data Availability Statement

The prompts used in this paper are publicly available as C4 News dataset with the “tensorflow”

package. All the large language models used in Section 6 are available in HuggingFace repository.
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Appendix

This appendix is devoted to detailed proofs of our theoretical statements, and additional experimental

evidence justifying WISER. §A formally describes the WISER algorithm. In §B, we discuss how

Assumption 2.1 can be implemented even in presence of human-edits §C complements the short

experimental section in §6 by providing extensive numerical studies concerning the empirical

behavior of WISER. Finally, in §D, we provide the detailed mathematical arguments behind WISER.

A WISER algorithm

Algorithm 1: Subroutine Block_Thresholding of WISER
Input: (Xi)i∈[n], block size b, threshold Q

1 for k ← 1 to ⌈n/b⌉ do
2 Bk ← [(k − 1)b + 1, min(kb, n

)]
. ;

3 Sk ←
∑

l∈Bk
Xl. ;

4 M̃ ← {}. ;
5 while k ≤ ⌈

√
n⌉ do

6 if Sk > Q then
7 append k to M̃ ;

8 k ← k + 1. ;

9 return M̃;

Algorithm 2: Subroutine Merging of WISER

Input: M̃ = {k1, . . . , km}, tuning parameter c
1 I ← {} ;
2 for j ← 1 to m do
3 if j odd and kj − 1 /∈ K and kj + 1 ∈ K then
4 if I = {} or kj − kI[end] > ⌈c

√
log n⌉ then

5 append j to I ;

6 else if j even and kj − 1 ∈ K and kj + 1 /∈ K then
7 if I = {} or kj − kI[end] > ⌈c

√
log n⌉ then

8 append j to I ;

9 return I;
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Algorithm 3: Subroutine Refined_Local_Search of WISER

Input: M̃ = {k1, . . . , km}, I = {i1, . . . , i2K̂}, tuning parameters ρ, C
1 M ← {kj : j ∈ I};
2 Enumerate M = {s1, . . . , s2K̂};
3 for j ← 1 to K̂ do
4 Dj ← [⌊(s2j−1 − C log n)b⌋ ∨ 1, ⌊(s2j + C log n)b⌋ ∧ n] . ;

5 d̃←
(∑K̂

j=1 |Dj|
)−1∑K̂

j=1
∑

s∈Dj
(Xs − µ0). ;

6 for j ← 1 to K̂ do
7 Lj ← [⌊(s2j−1 − C log n)b⌋ ∨ 1, ⌊(s2j−1 + C log n)b⌋] ;
8 Rj ← (⌊(s2j − C log n)b⌋, ⌊(s2j + C log n)b⌋ ∧ n]. ;
9 Îj ← arg mins∈Lj ,t∈Rj

∑
k∈Dj\[s,t](Xk − µ0 − ρd̃). ;

10 return List of estimated watermarked intervals Îj, j ∈ [K̂].

Algorithm 4: WISER
Input: (Xi)i∈[n], block size b, threshold Q, tuning parameters c, C and ρ

1 M̃ ← Block_Thresholding((Xi)i∈[n], b, Q);
2 I ← Merging(M̃, c);
3 L← Refined_Local_Search(M̃, I, ρ, C);
4 return List of estimated watermarked intervals L;

B Dealing with mixed-source texts

The assumption of knowledge of ζt can be too restrictive in most realistic scenarios where human

edits are possible. In such cases, one assumes that the pseudo-random numbers ζt can also be

reconstructed based on the available text and a Key with the help of a Hash function A:

ζt = A(ω(t−m):(t−1),Key). (8)

Suppose ω̃1 . . . ω̃n be a mixed-source text, with segments of un-interrupted watermarked texts

punctuated by human-generated texts through substitution, insertion or deletion of LLM generated

texts. As a reference, we refer the readers to Procedure 1 of human edits in Li, Ruan, Wang,

Long & Su (2025a). Note that it is impossible for any verifier to retrieve the exact pseudo-random

numbers corresponding to each token in a mixed-source texts. Nevertheless, with the knowledge of
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the hash function and Key, one can construct ζ̃t = A(ω(t−m):(t−1),Key). Once there is a stretch

of un-interrupted watermarked interval with length at least m ≥ 1, the pseudo-random numbers

ζt+m, ζt+m+1, . . . can be reliably re-constructed through (8) as the corresponding ζ̃’s. On the other

hand, if ζt is not the correct pseudo-random variable associated with ωt, then either

1. ω̃t is human generated, in which case Working Hypothesis 2.2 of Li, Ruan, Wang, Long & Su

(2025b) applies to yield ωt and ζ̃t are independent conditional on Pt;

2. ω̃t is watermarked, which must mean if ω̃t = ωt̃ in the original watermarked text, then

ωt̃ = S(Pt̃, ζt̃) for some true, unknown, pseudo-random number ζt̃. In this case we invoke the

sensitive nature of the hash function to conclude that ωt and ζ̃t are independent.

This argument appears in more detail in Section A.1 of Li, Ruan, Wang, Long & Su (2025a). In

conclusion, the verifier can always obtain access to a sequence ζm:n corresponding to a given text

ω1:n such that (i) if ω(t−m):t is NOT watermarked then ωt and ζt are independent conditional on

Pt; (ii), otherwise, ζt and ωt may be intricately dependent on each other. This latter observation is

crucial to our subsequent analysis and proposals, for it allows us to construct valid pivotal statistics.

In light of the above discussion, we can be excused in making the Assumption 2.1.

Assumption 2.1 can be seen through the lens of constructing the ζ̃t with m = 1. We make this slightly

simplistic assumption to avoid the un-necessary measure theoretical niceties which might potentially

cloud the novelty of our approach. Even with this assumption, proposing a computationally efficient

algorithm and establishing its theoretical validity in a setting with multiple watermarked intervals,

is an arguably non-trivial task in itself, and to the best of our knowledge, our paper is the first one to

deal with this problem with full mathematical rigor. Finally, for a general mixed-source text, we

remark that the WISER algorithm can be trivially extended to the setting with general m ∈ N by

padding an interval of length m to the left of the watermarked segments located by WISER. In the

following, we include a further discussion on mixed-source texts along with data misappropriation.

38



B.1 Further discussion on Assumption 2.2

A general way to deal with mixed-source texts has been proposed in Cai et al. (2025). Therein, the

authors allow for modifications to the watermarked tokens by allowing that dTV(ωt, S(Pt, ζt)) > 0,

as long as the distance is not too large. In light of this, Assumption 2.2 can be further appended by

the following:

(B): Let ω be the token generated by modifying ω′ := S(P, ζ), and let h(Y ), h(Y ′) be accordingly

defined via ω, ω′. Then it holds that

inf
P ∈P
|E1[h(Y )]− E1,P [h(Y ′)]| ≤ dτ, τ ∈ (0, 1),

where P and d are same as in Assumption 2.2.

Assumption (B) along with Assumption 2.2 ensure that even under potential modification, some

degree of separation (characterized by d(1− τ)) remain between the means of the distribution of

pivot statistics under null and under watermarking. It is conceivable that our algorithm is consistent

even for this case, and the theoretical guarantees should follow more or less similarly; however, to

keep the discussion focused, and to convey the key takeaways unhindered, we restrict ourselves to

Assumption 2.2.

C Extended numerical experiments

In this section we provide additional numerical experiments complementing those in §6. In §C.1,

we compare the accuracy of WISER with other competitive methods in the literature, on various

benchmark datasets on myriad standard watermarking schemes. Moving on to §C.2, we investigate

the effect of watermark intensity as well as the watermarked length on the performance of the

algorithms . Finally, in §C.3, we provide some ablation studies corresponding to the hyper-
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parameters in WISER.

C.1 Comparative performance of WISER

From §6.1, recall the experimental set-up, the SOTA benchmark algorithms as well as the considered

watermarking schemes. For each of the experiments, we implement WISER with block size equal

to b = 65, ρ = 0.5, α = 0.05 and γ = 0.1. Before we provide detailed comparison studies, we

elaborate on the performance metrics used.

C.1.1 Performance metric

To ensure consistency with the prior works, we primarily treat the intersection-over-union (IOU)

as a performance measure. Let, I := (I1, . . . , IK) denotes the true watermarked intervals and

Î := (Î1, . . . , ÎK̂) be the estimated watermarked segments. Then, the intersection-over-union metric

is given by

IOU(I, Î) =
|(∪K

i=1Ii) ∩ (∪K̂
j=1Îi)|

|(∪K
i=1Ii) ∪ (∪K̂

j=1Îi)|
.

Owing to Theorem 3.1, it is obvious that the IOU measure is expected to be close to 1 for the

WISER method. Following the definition of Pan et al. (2025), we also compute the precision, recall

and F1-score based on whether any of the estimated intervals have a nonempty intersection with

any of the true intervals, i.e.,

Precision =
|{i : 1 ≤ i ≤ K̂, Îi ∩ (∪K

j=1Ij) ̸= ϕ}|
K̂

, Recall =
|{i : 1 ≤ i ≤ K̂, Îi ∩ (∪K

j=1Ij) ̸= ϕ}|
K

.

Rand Index and asymmetry of the watermark segmentation.

In addition to these metrics, the Rand Index (RI) is also usually used to measure coherence between

the estimated and true watermarked segments, using the algorithm illustrated in Prates (2021). For
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the standard definition of Rand Index, see Equation (2) of Prates (2021). However, the Rand Index

may depict a wrong picture of the performance of a watermarked segment identification algorithm.

Although watermark segmentation closely resembles epidemic change-point detection, a crucial

difference arises in algorithm evaluation. Before proceeding, we briefly deliberate on these issues.

Standard change-point problems are symmetric; under model (3), the edge cases p = 1, q = n and

p = q are equivalent. On the other hand, watermarking problems exhibit asymmetry; the edge cases

(i) “the entire sequence is un-watermarked” and (ii) “the entire sequence is watermarked”, differ

due to irregular means of the pivot statistics under watermarking. Rand Index (RI) - despite being

used in watermark segmentation (Li et al. 2024, Pan et al. 2025) - fails to capture this distinction.

As an illustration, consider the situation where most of the tokens (say 90%) are watermarked, while

the watermark detection algorithm fails to detect any watermarked segment. While the performance

of such an algorithm should reflect poorly, the standard Rand Index fails to capture this due to the

exchangeability of the watermarked segment and the non-watermarked segment: any pair of indices

(i, j) that is truly watermarked trivially is also part of the estimated non-watermarked segment and

considered as a concordant pair.

To circumvent these limitations described there, we consider a Modified Rand Index (MRI) given as

MRI(I, Î) := RI(I, Î)

−
∑

i ̸=j

(∑K
k=1 1{{i, j} ⊆ Ik ∩ (∪K̂

l=1Îl)c}+∑K̂
l=1 1{{i, j} ⊆ Îl ∩ (∪K

k=1Ik)c}
)

(
n
2

) ,

where 1{·} is the indicator function, and n is the number of tokens. The MRI simply adjusts the

RI by restricting its exchangeability only within each of the watermarked or non-watermarked

intervals, but not in between. Intuitively, the MRI removes the specific pairs of indices (i, j) from

the calculation of RI for which both the indices i and j lie either in a true watermarked interval but
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are estimated to be in the non-watermarked region, or are estimated to be in a watermarked interval

but actually lie in a non-watermarked region.

C.1.2 Experimental results and explanation

The comparison results are summarized in Tables 1, 2-4, corresponding to each of the watermarking

schemes considered. Across all watermarking settings, WISER consistently delivers the strongest

performance across every model and metric. In the Gumbel case, it achieves near-perfect results with

IOU scores above 0.90, precision of 1.0, and recall above 0.98 across both small and large models.

Competing methods like Aligator and SeedBS-NOT often fail to balance recall and precision,

either collapsing to very low precision (Aligator) or producing weaker recall (SeedBS-NOT),

while Waterseeker attains moderate balance but still lags well behind WISER.

The trend is even more pronounced in the cases of Inverse and Red-Green setups, where the pivot

statistics remain uniformly bounded. In these cases, Aligator fail to detect any watermarked

intervals, while both SeedBS-NOT and Waterseeker suffer a significant decline in performance.

In contrast, WISER maintains F1-scores in the range of 0.95 - 0.99 with stable IOU values across

model sizes, showing robustness to different architectures and vocabulary sizes. Waterseeker

provides the next best alternative, but with noticeable drops in IOU and F1, especially for larger

models. These findings clearly demonstrate that WISER not only generalises across watermarking

schemes but also offers substantial gains in both detection accuracy and reliability, marking a clear

benefit over existing baselines.

C.1.3 Why WISER outperforms other methods

The enhanced performance of WISER does not come out-of-the-blue, rather we argue that it is

a byproduct of our unique, epidemic change-point perspective that marries theoretical validity

with practical insights. While these methods—SeedBS-NOT, Aligator, and Waterseeker—
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Model Name Vocab Size Method IOU Precision Recall F1 RI MRI

facebook/opt-125m 50272

WISER 0.906 0.995 0.980 0.987 0.968 0.931
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.558 0.988 0.710 0.826 0.804 0.783
SeedBS-NOT 0.178 0.282 0.228 0.252 0.529 0.428

google/gemma-3-270m 262144

WISER 0.874 0.965 0.958 0.961 0.945 0.934
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.547 0.983 0.695 0.814 0.797 0.775
SeedBS-NOT 0.221 0.316 0.272 0.293 0.575 0.544

facebook/opt-1.3b 50272

WISER 0.846 0.980 0.928 0.953 0.934 0.904
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.555 0.985 0.698 0.817 0.802 0.781
SeedBS-NOT 0.189 0.322 0.250 0.282 0.526 0.437

princeton-nlp/Sheared-LLaMA-1.3B 32000

WISER 0.656 0.990 0.962 0.976 0.871 0.850
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.582 0.992 0.750 0.854 0.826 0.807
SeedBS-NOT 0.181 0.286 0.235 0.258 0.541 0.515

mistralai/Mistral-7B-v0.1 32000

WISER 0.718 0.935 0.822 0.875 0.859 0.847
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.590 0.996 0.760 0.862 0.830 0.813
SeedBS-NOT 0.154 0.265 0.192 0.223 0.502 0.489

meta-llama/Meta-Llama-3-8B 128256

WISER 0.878 0.995 0.965 0.980 0.955 0.913
Aligator 0.000 0.005 0.002 0.003 0.205 0.144
Waterseeker 0.510 0.980 0.652 0.783 0.774 0.748
SeedBS-NOT 0.143 0.242 0.185 0.210 0.511 0.480

Table 2: Results for Inverse Watermarking

each contribute useful perspectives, they also exhibit important limitations that the generality of our

method usually overcomes.

Limitations of SeedBS-NOT: The limitations of SeedBS-NOT primarily arise from its reliance

on a permutation-based change-point detection framework, which is inherently computationally

expensive. Moreover, nowhere they restrict their attention to the specific scenario of watermarked

segments, which consigns the change-points to occur in pairs, corresponding to the start and end

of a watermarked segment. This is automatically alleviated by WISER through its adoption of a

natural epidemic change-point formulation. This structural assumption substantially reduces the

search space, yielding both computational efficiency and improved statistical stability. Additionally,

SeedBS-NOT works with the sequence of p-values that are computed from a single observation of

the pivot statistic at that location. Due to the complicated nature of the dependence between these
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Model Name Vocab Size Method IOU Precision Recall F1 RI MRI

facebook/opt-125m 50272

WISER 0.853 1.000 0.975 0.987 0.914 0.903
Aligator 0.000 0.000 0.000 0.000 0.259 0.209
Waterseeker 0.730 0.998 0.815 0.897 0.889 0.882
SeedBS-NOT 0.570 0.665 0.615 0.639 0.897 0.870

google/gemma-3-270m 262144

WISER 0.838 0.973 0.970 0.972 0.908 0.896
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.643 0.982 0.820 0.894 0.864 0.850
SeedBS-NOT 0.600 0.749 0.738 0.743 0.900 0.872

facebook/opt-1.3b 50272

WISER 0.846 0.993 0.990 0.992 0.923 0.913
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.623 0.990 0.815 0.894 0.851 0.836
SeedBS-NOT 0.597 0.764 0.735 0.749 0.901 0.874

princeton-nlp/Sheared-LLaMA-1.3B 32000

WISER 0.850 1.000 0.990 0.995 0.919 0.908
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.619 0.995 0.810 0.893 0.851 0.836
SeedBS-NOT 0.570 0.775 0.738 0.756 0.898 0.860

mistralai/Mistral-7B-v0.1 32000

WISER 0.814 0.995 0.955 0.975 0.909 0.898
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.559 0.993 0.742 0.850 0.818 0.799
SeedBS-NOT 0.507 0.718 0.672 0.695 0.877 0.843

meta-llama/Meta-Llama-3-8B 128256

WISER 0.864 1.000 0.995 0.997 0.929 0.919
Aligator 0.000 0.000 0.000 0.000 0.203 0.141
Waterseeker 0.647 1.000 0.838 0.912 0.866 0.851
SeedBS-NOT 0.590 0.778 0.770 0.774 0.919 0.883

Table 3: Results for Red-Green Watermarking

p-values, they are difficult to combine to increase the statistical power. Our approach circumvents

this by aggregating the pivot statistic at the block level (Step 7 in Figure 2), enhancing the effective

sample size and increasing the power of the detection.

Limitations of Aligator: The Aligator algorithm frames the task as a reinforcement learning

problem, producing a smoothed estimate of the underlying generative process and subsequently

applying token-level hypothesis tests with a p-value threshold. While this strategy can capture

localized deviations, it often results in a large number of short and fragmented detections, many

of whom might be spurious due to possible multiple testing. Consequently, the method tends to

produce many disjoint intervals, which severely diminishes its precision. By contrast, the discarding

stage of WISER enforces structural coherence at the segment level, before returning fine-grained

estimate through applying (5). This ensures that localized intervals correspond more closely to
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Model Name Vocab Size Method IOU Precision Recall F1 RI MRI

facebook/opt-125m 50272

WISER 0.925 0.998 0.998 0.998 0.980 0.979
Aligator 0.665 0.345 0.978 0.510 0.935 0.927
Waterseeker 0.712 1.000 0.905 0.950 0.891 0.884
SeedBS-NOT 0.469 0.725 0.560 0.632 0.867 0.817

google/gemma-3-270m 262144

WISER 0.935 1.000 1.000 1.000 0.982 0.973
Aligator 0.558 0.252 0.952 0.399 0.906 0.889
Waterseeker 0.614 1.000 0.782 0.878 0.841 0.824
SeedBS-NOT 0.334 0.610 0.440 0.511 0.766 0.686

facebook/opt-1.3b 50272

WISER 0.904 1.000 0.990 0.995 0.972 0.969
Aligator 0.446 0.216 0.928 0.350 0.887 0.863
Waterseeker 0.677 1.000 0.840 0.913 0.873 0.861
SeedBS-NOT 0.350 0.573 0.430 0.491 0.753 0.717

princeton-nlp/Sheared-LLaMA-1.3B 32000

WISER 0.919 1.000 1.000 1.000 0.979 0.977
Aligator 0.397 0.202 0.870 0.328 0.870 0.842
Waterseeker 0.653 1.000 0.778 0.875 0.851 0.837
SeedBS-NOT 0.264 0.486 0.350 0.407 0.688 0.666

mistralai/Mistral-7B-v0.1 32000

WISER 0.896 1.000 0.998 0.999 0.973 0.972
Aligator 0.215 0.164 0.672 0.263 0.817 0.774
Waterseeker 0.646 1.000 0.795 0.886 0.853 0.838
SeedBS-NOT 0.238 0.468 0.315 0.376 0.650 0.575

meta-llama/Meta-Llama-3-8B 128256

WISER 0.908 1.000 0.998 0.999 0.976 0.976
Aligator 0.551 0.351 0.950 0.513 0.911 0.891
Waterseeker 0.535 1.000 0.712 0.832 0.799 0.773
SeedBS-NOT 0.413 0.658 0.545 0.596 0.775 0.730

Table 4: Results for Permute and Flip Watermarking

contiguous watermark insertions.

Limitations of Waterseeker: The Waterseeker algorithm may seem structurally similar to

the proposed WISER method, in that it also employs a two-stage detection framework. However,

Waterseeker considers a sliding window-based testing mechanism in its first stage, which has a

crucial limitation. Consider a very realistic scenario when one of the pivot statistics corresponding

to an un-watermarked token is high simply due to random chance. In Waterseeker, this will

push the score up for W consecutive windows, usually resulting in a false positive in the first stage.

On the other hand, for WISER such anomalous pivot statistics will affect only one block, which,

being usually part of a connected interval with small length, can potentially be discarded with a

very high probability in our discarding stage. For larger model, this scenario is extremely likely,

making this reduction in precision much more pronounced (see Models google/gemma-3-270m and
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meta-Ilama/Meta-Llama-3-8B in Tables 1, 2 - 4). Moreover, Pan et al. (2025) provide only limited

theoretical validation of their approach, making the optimal tuning of hyper-parameters difficult to

justify. This lack of statistical guarantees limits its reliability across watermarking schemes and

model sizes, in contrast to the rigorous and general guarantees underlying WISER.

C.2 Effect of Watermark Intensity

Type Method IOU F1 RI MRI

Strong but short

WISER 0.794 0.984 0.933 0.925
SeedBS-NOT 0.639 0.785 0.919 0.900
Waterseeker 0.878 0.997 0.969 0.967

Weak but long

WISER 0.745 0.779 0.628 0.551
SeedBS-NOT 0.172 0.321 0.675 0.187
Waterseeker 0.268 0.847 0.519 0.172

Table 5: Effect on watermarking signal strength

Following the experimental design of Pan et al. (2025), we evaluate the comparative performance of

the proposed WISER algorithm under varying levels of watermark intensity. As a demonstration,

we choose Google’s Gemma-3 series model (270 million) to generate a completion of 500 tokens

for each input prompt. The watermark strength is modulated through the bias parameter δ of the

Red-Green watermarking scheme (Kirchenbauer et al. 2023), while another parameter m specifies

the length of the watermarked region by applying the decoding strategy to the middlemost m tokens

within the 500-token output.

In the “strong but short” configuration (δ = 2.0, m = 100), as shown in Table 5, all methods

perform well, achieving a Rand Index exceeding 0.9. Although WISER is not the best-performing

method in this particular case, it remains competitive with Waterseeker, which achieves the

highest score. By contrast, in the “weak but long” configuration (δ = 1.0, m = 400), only WISER

maintains robust performance. While SeedBS-NOT appears to achieve a higher Rand Index, this
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outcome is primarily attributed to the issues described in §C.1.1. The Modified Rand Index (MRI)

offers a more reliable assessment, highlighting the superiority of WISER in this setting.

C.3 Ablation studies

We also perform an ablation study to understand the effectiveness of the hyper-parameters (e.g. -

block size and ρ) of WISER. Our results are arguably quite stable across wide choices of the tuning

parameters; nevertheless we provide more informed choices along with additional insights.

For this study, we consider a single watermarked segment from token index 100 to 200, fix ρ = 0.25

and vary the tuning parameter b of the WISER algorithm. As one would have hoped, increasing

the block size too much decreases the performance, as the smaller watermarked segments gets

subsumed in the noise of unwatermarked segments when block sizes are too large. On the other

hand, decreasing the block size would reduce the statistical power of the detection algorithm in the

first stage itself. Therefore, one requires a judicious choice of the block size to optimally balance

these two aspects, which is empirically observed through the upper plot of Figure 7. Based on

empirical evidence, we recommend the choice b ∈ (⌈
√

n⌉, 3⌈
√

n⌉), which works quite well in

various settings that we have experimented with, while being also theoretically supported.

A similar conclusion also holds for the choice of ρ, for which we fix the block size as b = 25 and

vary the tuning parameter ρ. As the choice of d in Assumption 2.2 is exogeneously determined

based on the language model and watermarking scheme, a large value of ρ would imply a smaller d̃

and by virtue of Theorem 3.1 would imply a larger error. The lower plot of Figure 7 demonstrates

this empirically. However, any value of ρ between 0.1 and 0.5 provides reasonable and relatively

stable estimates.
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Figure 7: Effect on performance metrics (IOU and Rand Index) due to modification of the hyper-
parameters of the WISER algorithm, namely block size (Top) and ρ (Bottom).

D Proof of Theoretical Results

In this section, we collect the proofs of theoretical results in the §3. Before we proceed further, we

establish some notations. In the following, we write an ≲ bn if an ≤ Cbn for some constant C > 0,

and an ≍ bn if C1bn ≤ an ≤ C2bn for some constants C1, C2 > 0. Often we denote an ≲ bn by

an = O(bn). Additionally, if an/bn → 0, we write an = o(bn). For a function f : Rn ⊗ Rm → R,

let f (1)(θ, w) = ∂
∂θ

f(θ, w), θ ∈ Rn, w ∈ Rm, n, m ≥ 1, be the partial derivative function with
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respect to θ.

D.1 Proof of Theorem 3.1

In the following, we first state and prove a more generalized version of Theorem 3.1.

Theorem D.1. Let {Xt}n
t=1 := {h(Yt)}n

t=1 be the pivot statistics based on the given input text, and

assume that I0 ⊂ {1, . . . , n} be the watermarked interval. Grant Assumption 2.2. Let us also

denote

εt =


Xt − µ0, t /∈ I0,

Xt − µt, µt := E1,Pt [Xt], t ∈ I0.

Suppose the class of distributions P is closed and compact, and there exists η > 0 such that

supP ∈P E1,P [exp(η|ε|)] <∞. Moreover, assume that min{Var0(ε), supP Var1,P (ε)} > 0. Then it

holds that

|Î∆I0| = OP

(
(sup

θ≥0
{θρd̃−Ψ(θ)})−1

)
,

where ∆ denotes the symmetric difference operator, OP hides constants independent of n and d̃, and

Ψ(θ) = logE0[exp(θε)] + 2−1 log sup
P

E1,P [exp(2θε)] + 2−1 log sup
P

E1,P [exp(−2θε)].

Theorem D.1 is proved by showing that the probability P(|Î∆I0| > M) is small for all sufficiently

large M . This probability is controlled by considering the objective function VI = SIc−(µ0+ρd̃)|Ic|,

where SI = ∑
k∈I Xk and SIc = ∑n

k=1 Xk − SI , and noting that, by construction of Î , P(|Î∆I0| >

M) ≤ P(infI:|I∆I0|>M VI −VI0 ≤ 0). Usually, in change-point literature, one controls terms such as

infI:|I∆I0|>M VI − VI0 through Hàjek-Rényi type inequality Hájek & Rényi (1955); see Bai (1994),

Bonnerjee et al. (2025). Such inequalities are usually derived by dividing the domain, on which

infimum is taken, into smaller intervals, and applying Doob’s inequality or Rosenthal’s inequality
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piece-meal. However, the main bottleneck in a this particular setting is the potentially strong

dependence between the pivot statistics in watermarked patches. We develop novel arguments that

exploits supP ∈P E1,P [exp(η|ε|)] < ∞ to provide an extended version of the Hajek-Renyi theory

through the lens of cumulant generating function. The proof is provided below.

Proof of Theorem D.1. For a candidate watermarked interval I , let A1(I) = I ∩ Ic
0, A2(I) = I ∩ I0,

A3(I) = Ic∩ I0, A4(I) = (I ∪ I0)c, and correspondingly xi(I) = |Ai(I)|, i = 1(1)4. Subsequently,

we omit the argument I when it is clear from the context. Note that |I0| = x2 + x3, |I| = x1 + x2,

and |Î∆I0| = x1 + x3. Note that, by definition of Î it follows that VÎ ≤ VI0 . Finally, denote

Si = ∑
k∈Ai

Xk, and Sε
i = ∑

k∈Ai
εk. With these notations established, we proceed through the

following series of implications.

VI − VI0 = (SIc − SIc
0
)− (|Ic| − |Ic

0|)(µ0 + ρd̃)

= S3 − S1 − (x3 − x1)(µ0 + ρd̃)

= (Sε
3 +

∑
t∈A3

µt)− (Sε
1 + x1µ0)− (x3 − x1)(µ0 + ρd̃)

= Sε
3 − Sε

1 +
∑

t∈A3

(µt − µ0) + (x1 − x3)ρd̃

≥ Sε
3 − Sε

1 + x3(d− ρd̃) + x1ρd̃ (9)

≥ Sε
3 − Sε

1 + (x1 + x3)ρd̃, (10)

where (9) follows from Assumption 2.2 and (10) uses d ≥ 2ρd̃. For some M > 0, let DM := {I :

|I∆I0| > M}. Let I0 = [L, R]. Note that, a candidate interval I can belong to any of the following

five sub-classes:

• P1 := {I : I ⊆ I0, I ∈ DM}.

• P2 := {I : I ⊇ I0, I ∈ DM}.
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• P3 := {I : I ∩ I0 = ϕ, I ∈ DM}.

• P4 := {(a, b) : a < L < b < R, I = (a, b) ∈ DM}.

• P5 := {(a, b) : L < a < R < b, I = (a, b) ∈ DM}.

Subsequently, we detail the analysis for the relatively harder case P4. The arguments for the other

cases are similar. Observe that:

P(Î ∈ P4) ≤ P( min
I:I∈P4

VI − VI0 ≤ 0)

≤ P
(

max
I:I∈P4,x1+x3>M

Sε
1 − Sε

3
x1 + x3

≥ ρd̃)

≤
∞∑

j=M+1
inf
θ≥0

P
(

max
a,b:a<L<b<R:L−a+R−b=j

exp(θ(Sε
[a,L] − Sε

[b,R])) ≥ exp(θρd̃j))

≤
∞∑

j=M+1
inf
θ≥0

exp(−θρd̃j)E
[

max
a,b:a<L<b<R:L−a+R−b=j

exp(θ(Sε
[a,L] − Sε

[b,R]))
]

≤
∞∑

j=M+1
inf
θ≥0

exp(−θρd̃j)E
[

max
a,b:a∈{L−j+1,··· ,L},b∈{(R−j+1)∨L,··· ,R}

exp(θ(Sε
[a,L] − Sε

[b,R]))
]

(11)

For j ∈ [n], let Fj := σ({(ωs−1, ζs) : s < j}). Write

E
[

max
a,b:a∈{L−j+1,··· ,L},b∈{(R−j+1)∨L,··· ,R}

exp(θ(Sε
[a,L] − Sε

[b,R]))
]

= E
[

max
a:a∈{L−j+1,··· ,L}

exp(θSε
[a,L])E

[
max

b∈{(R−j+1)∨L,··· ,R}
exp(−θSε

[b,R]) | F(R−j)∨L

]]

≤ E
[

max
a:a∈{L−j+1,··· ,L}

exp(θSε
[a,L])

√
E[exp(−2θSε

[(R−j+1)∨L,R]) | F(R−j)∨L]√
E
[

max
b∈{(R−j+1)∨L,··· ,R}

exp(2θSε
[(R−j+1)∨L,b]) | F(R−j)∨L

]]
, (12)

where, (12) follows from Cauchy-Schwartz inequality. Now, note that, by construction of εt,

conditional on F(R−j)∨L, εt is a martingale difference sequence adapted to σ({(ωs−1, ζs) : (R− j +

1) ∨ L ≤ s ≤ t}). Since x 7→ exp(2θx) is convex, hence exp(2θSε
[(R−j+1)∨L,b]), b ∈ {(R − j +

51



1) ∨ L, . . . , R} is a sub-martingale sequence. Consequently, Doob’s maximal inequality (Hall &

Heyde 1980) applies. Further sequential conditioning yields the following series of inequalities.

E
[

max
b∈{(R−j+1)∨L,··· ,R}

exp(2θSε
[(R−j+1)∨L,b]) | F(R−j)∨L

]
≤ 4E[exp(2θSε

[(R−j+1)∨L,R]) | F(R−j)∨L]

≤ 4E[exp(2θSε
[(R−j+1)∨L,R−1])E[exp(2θεR)|FR−1] | F(R−j)∨L]

≤ 4 sup
P

E1,P [exp(2θε)]E[exp(2θSε
[(R−j+1)∨L,R−1]) | F(R−j)∨L]

≤ 4
(

sup
P

E1,P [exp(2θε)]
)j

. (13)

Proceeding along similar lines, we obtain

E[exp(−2θSε
[(R−j+1)∨L,R]) | F(R−j)∨L] ≤ 4

(
sup

P
E1,P [exp(−2θε)]

)j
, (14)

and

E[ max
a:a∈{L−j+1,··· ,L}

exp(θSε
[a,L])] ≤ 4

(
E0[exp(θε)]

)j
. (15)

Combining (13)-(15) and plugging them in (12) and (11), one obtains

P(I ∈ P4) ≤ 16
∞∑

j=M+1
inf
θ≥0

(
exp(−θρd̃)E0[exp(θε)]

√
sup

P
E1,P [exp(2θε)] sup

P
E1,P [exp(−2θε)]

)j

.

(16)

To deliver the coup de grâce of our argument, we are required to bound (16). To that end, define

ϕ : R+ → R as

ϕ(θ) = −θρd̃ + logE0[exp(θε)] + 2−1 log sup
P

E1,P [exp(2θε)] + 2−1 log sup
P

E1,P [exp(−2θε)].
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By definition of ϕ, P(I ∈ P4) ≤
∑∞

j=M+1 infθ≥0 exp(jϕ(θ)). Moreover, for λ ∈ (0, 1), θ1, θ2 ∈ R+,

Hölder’s inequality produces

log sup
P

E1,P [exp(2(λθ1 + (1− λ)θ2)ε)] ≤ sup
P

(
λ logE1,P [exp(2θ1ε)] + (1− λ) logE1,P [exp(2θ2ε)]

)
.

(17)

Similar arguments for logE0[exp(θε)] and log supP E1,P [exp(−2θε)] show that ϕ, being a linear

combination of convex functions with non-negative weights (note that −θρd̃ is linear) , is itself

convex.

Let f : R ⊗ R|W | 7→ R be given by f(θ, P ) = logE0[exp(2θε)] + logE1,P [exp(2θε)]. Recalling

that f (1)(θ, w) = ∂
∂θ

f(θ, w), observe that

f (1)(0, P ) = 0 for any P ∈ P , (18)

since E0[ε] = E1,P [ε] = 0. Therefore, noting that P is a compact subset of the |W |-dimensional sim-

plex, in light of supP ∈P E[exp(−η|ε|)] ≤ supP ∈P E[exp(η|ε|)] <∞, Danskin’s Theorem (Danskin

1967) entails

∂

∂θ
sup
P ∈P

f(θ, P )
∣∣∣∣
θ↓0

= sup
P ∈P

f (1)(0, P ) = 0,

where in the second inequality we use that f(0, P ) = 0 for any P ∈ P , and the third equality follows

from (18). Similarly, ∂
∂θ

supP ∈P f(θ, P )
∣∣∣∣
θ↑0

= − infP ∈P f (1)(0, P ) = 0. Therefore, ϕ′(0) =

−ρd̃ < 0. On the other hand, since min{Var0(ε), supP Var1,P (ε)} > 0, hence ϕ(θ)→∞ as θ ↑ ∞.

In conjunction with ϕ being convex, there must exist κ ∈ (0, 1) such that log κ := infθ≥0 ϕ(θ).
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Consequently, from (16), one obtains,

P(I ∈ P4) ≤ 16
∞∑

j=M+1
κj = O(κM).

Suppose δ ∈ (0, 1) be given. A choice of M > log 1/ε
log 1/κ

ensures that P(I ∈ P4) < δ. This completes

the proof.

Finally, Theorem 3.1 is proved by invoking Theorem D.1 and Proposition 2.

We can further sharpen the O((ρd̃)−1) rate in Theorem 3.1 to O((ρd̃)−2) by assuming a mild

condition: local sub-Gaussianity of the pivot statistics. The following result also trivially follows

from Theorem D.1 and Proposition 2, but is separately stated to highlight its importance.

Lemma D.2. Grant the assumptions of Theorem 3.1. If

max{E0[exp(r|ε|)], sup
P ∈P

E1,P [exp(r|ε|)]} ≤ exp(r2/2),

for all r ∈ [0, η], then choosing ρ > 0 such that ρd̃ < 5
2η, then |Î∆I0| = OP

(
(ρd̃)−2

)
.

D.2 Proof of Theorem 4.1

For convenience, we first re-state the theorem.

Theorem D.3. Assume that the null distribution of the pivot statistics is absolutely continuous

with respect to the Lebesgue measure. Let the number of watermarked intervals K be bounded,

and Assumption 4.1 be granted for the watermarked intervals Ik, k ∈ [K]. Fix α ∈ (0, 1), and

recall the quantities defined in WISER described in Figure 2. Suppose that E0[|X − µ0|p] < ∞

for some p ≥ 2, and let the block length b = bn satisfy bn = O(nυ), and bn/n1/p → ∞, where

υ > 1/p is same as in Assumption 4.1. Moreover, suppose the threshold Q = Qn is selected so that
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P0(max1≤k≤⌈n/b⌉ Sk > Q) = α. Finally, assume d ≥ c for some constant c > 0, and

sup
P ∈P

E1,P [X] <∞, (19)

and assume there exists τ > 0 such that

κ := inf
θ≥0

θ(µ0 + τd) + log sup
P

E1,p[exp(−θX)] < 0. (20)

Then, given ε > 0 and d ≥ c for some constant c > 0, under the assumptions of Theorem 3.1,

there exist Mε ∈ R+, independent of n, K, and d, and ρ > 0, such that WISER applied with

hyper-parameters b and ρ satisfies

lim inf
n→∞

P
(
K̂ = K, max

k∈[K]
|Îk∆Ik| < Mεd

−1
)
≥ 1− ε. (21)

Let B̃ = {1 ≤ k ≤ ⌈n/b⌉ : Bk ⊆ Ij for some j ∈ [K]}. Our proof proceeds through a series of

arguments, each carefully orchestrated to establish the validity of the corresponding steps of our

algorithm. We comment that subsequently, all statements involving n but without a limit attached to

it are meant to be considered for all sufficiently large values of n.

Step 1: Validity of first stage thresholding.

In this step, we show that

P(min
k∈B̃

Sk > Q)→ 1, as n→∞. (22)
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To begin with, note that

lim sup
n→∞

max
k∈B̃

P(Sk ≤ Qn)1/b ≤ lim sup
n→∞

inf
θ≥0

exp(θQnb−1
n + log sup

P ∈P
E1,P [exp(−θX)])

≤ inf
θ≥0

exp(θµ0 + log sup
P ∈P

E1,P [exp(−θX)]) (23)

≤ exp(κ) < 1, (24)

where (23) is obtained through an application of Proposition 3, and (24) follows from (20). Since

κ < 0, one has n
b

exp(κb)→ 0 as n→∞, and consequently

P(min
k∈B̃

Sk ≤ Q) ≤ n

b
max
k∈B̃

P(Sk ≤ Qn)→ 0, as n→∞,

thereby establishing (22).

Step 2. Estimation of the number of watermarked regions through the set M .

Recall M from the Step 1 of Subroutine Refined_Local_Search in Algorithm 3. In this step

of our proof, we will prove P(K̂ = K)→ 1, which will also imply that |M | is even with probability

approaching 1. Therefore, we may be excused for assuming that |M | is even.

Let C1, . . . , CK̂ be the disjoint set of intervals in M , with Cj = [(s2j−1 − 1)b + 1, s2jb]. Note that

for each k ∈ B such that Sk > Q, Bk ⊆ Cj for some j. Let B̃j = {k ∈ B̃ : Bk ⊆ Ij}, j ∈ [K]. We

remark that

Clearly, B̃ = ∪K
j=1B̃j , and B̃j are disjoint. Therefore, in light of the construction of M from blocks

surpassing the threshold Q, it follows,

P(min
k∈B̃

Sk > Q) = P(min
j∈[K]

min
k∈B̃j

Sk > Q) ≤ P(for each j ∈ [K], there exists ij ∈ [K̂] such that B̃j ⊆ Cij
),
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which implies, in light of (22),

P(An)→ 1, as n→∞, where, An := {for each j ∈ [K], there exists ij ∈ [K̂] such that B̃j ⊆ Cij
}.

(25)

It is crucial to note that since both B̃j and Cj’s are defined to occur from left-to-right and since Cj’s

are connected intervals, under the event An it also holds that i1 ≤ i2 ≤ . . . ≤ iK . At this stage, the

relationship between K̂ and K is still not entirely clear. Subsequently, we will show that under

the event An, the mapping j 7→ ij is injective, establishing that K̂ ≥ K with high probability. To

that end, suppose there exists k1 < k2 ∈ [K] such that ik1 = ik2 . Since Cik1
is a connected interval,

ik1 = ik2 implies that that ik1 = ik1+1. Let PE,F (·) = P(· ∩E ∩ F ) for any events E, F . Consider

the following series of inequalities.

PAn(There exists k ∈ [K − 1] such that Cik
= Cik+1)

≤ PAn(There exists k ∈ [K − 1] such that (Ik,R, Ik+1,L) ⊆ Cik
)

≤ PAn(There exists k such that min
l∈(⌈Ik,R/b⌉,⌊Ik+1,L/b⌋)

Sl > Q)

≤ P0(
n/b∑
k=1

I{Sk > Q} ≥ C0

√
log n), (26)

where the P0 in final inequality appears since for l ∈ (⌈Ik,R/b⌉, ⌊Ik+1,L/b⌋), the region Bl is un-

watermarked; the
√

log n appears by invoking Assumption 4.1 and noting that b−1(Ik+1,L− Ik,R) ≥

C0
√

log n. An application of Proposition 4 to (26) entails, in view of (25), that,

PAn(B̄n)→ 1, as n→∞, where B̄n = {Cik
and Cis are disjoint if ik ̸= is}.

Clearly, this implies that PAn(K̂ ≥ K)→ 1 as n→∞, which also produces P(K̂ ≥ K)→ 1 as

n → ∞. On the other hand, if K̂ > K, then under the event An ∩ B̄n, there exists j ∈ [K̂] such
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that Cj and ∪s∈BBs are disjoint. Consequently, it must be true that |Cj ∩ (∪K
k=1Ij)| ≤ b. Note that,

by construction of Cj’s in WISER, |Cj| ≥ cb
√

log n. Therefore it must be true that there are at

least 2−1c
√

log n many s’s such that Bs ∩ Cj ∩ (∪K
k=1Ij) = ϕ, and Ss > Q. Hence it follows from

Proposition 4 that

PAn,B̄n
(K̂ > K)→ 0, as n→∞,

which immediately implies that

P(K̂ = K)→ 1 as n→∞. (27)

Step 3. Choice of d̃ and ρ.

Recall d̃ from Step 5 of Subroutine Refined_Local_Search in Algorithm 3. In this step, we

establish that there exists ρ > 0, such that d > 2ρd̃ with high probability. In conjunction to d̃, also

define

d† =
∑K

j=1
∑

s∈Ij
(Xs − µ0)∑K

j=1 |Ij|
.

Let the event {K̂ = K} be denoted as En. Under En, by construction of Dj , PAn,Bn,En(Ij ⊆

Dj for all j ∈ [K]) → 1 as n → ∞. Call the latter event as Fn. Observe that under En ∩ Fn, it

holds

K∑
j=1
|Ij|+ 2Cb log n ≥

K̂∑
j=1
|Dj| ≥

K∑
j=1
|Ij|+ Cb log n (28)

for some C > 0. Therefore, under the same event, it follows

d̃ ≤ d†
∑K

j=1 |Ij|∑K
j=1 |Ij|+ Cb log n

+
∑

s∈∪j(Ic
j ∩Dj)(Xs − µ0)∑K

j=1 |Ij|+ Cb log n
. (29)

We first tackle the second term in the upper-bound in (29). Let D†
j = [(Ij,L − ⌊Cb log3/2 n⌋) ∨
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1, (Ij,R + ⌊Cb log3/2 n⌋) ∧ n]. Again, by construction of Dj as well as from Assumption 4.1, for all

sufficiently large n it follows

PAn,B̄n,En
(Dj ⊆ D†

j , D†
i ∩D†

j = ϕ for i ̸= j)→ 1.

Call the above event as Gn. Fix ε > 0, and consider the following implications.

PAn,B̄n,En

(∑
s∈∪j(Ic

j ∩Dj)(Xs − µ0)∑K
j=1 |Ij|+ Cb log n

> ε

)

≤ PAn,B̄n,En,Gn

(∑
s∈∪j(Ic

j ∩D†
j ) |Xs − µ0|∑K

j=1 |Ij|+ Cb log n
> ε

)
+ o(1)

≤ P
(∑

s∈∪j(Ic
j ∩D†

j ) |Xs − µ0|∑K
j=1 |Ij|+ Cb log n

> ε

)
+ o(1)

≤ O(b log3/2 n)
ε2n log2 n

+ o(1) = o(1), (30)

where the inequality in the final assertion follows from | ∪K
j=1 (Ic

j ∩D†
j)| ≲ b log3/2 n. Therefore,

(29) and (30) jointly yields

PAn,B̄n,En,Fn
(d̃ ≤ 2d†)→ 1, as n→∞. (31)

Next, we focus on controlling d† by d. To that end, we resort to an argument through moment

generating functions. On one hand, (20) entails

P(d† ≤ τd) ≤ inf
θ≥0

(
exp(θ(µ0 + τd) + log sup

P ∈P
E1,P [exp(−θX)])

)∑K

j=1 |Ij |
≤ exp(κ

K∑
j=1
|Ij|)→ 0.

(32)
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On the other hand, in light of (19) and d ≥ c, choose

ν >
supP ∈P E1,P [X]− µ0

c
∨ τ

4 ,

and write:

P(d† ≥ 2νd) ≤ inf
θ≥0

(
exp(−2θνc + log sup

P ∈P
E1,P [exp(θ(X − µ0))]

)∑K

j=1 |Ij |
. (33)

Echoing the argument in the proof of Theorem 3.1, define

g(θ, P ; c) = −2θνc + logE1,P [exp(θ(X − µ0))], g̃(θ ; c) = sup
P ∈P

g(θ, P ).

Since P is compact and supP ∈P E1,P [exp(η|X − µ0|] < ∞, Danskin’s Theorem (Danskin 1967)

applies and produces

g̃
(1)
+ (0, P ; c) = ∂

∂θ
sup
P ∈P

g(θ, P ; c)
∣∣∣∣
θ↓0

= sup
P ∈P

g(1)(0, P ; c) = −2νd + sup
P ∈P

E1,P [X − µ0] ≤ −νd < 0,

(34)

where the final inequality is derived via (19). Moreover, similar to (17) it can be argued that

g̃(θ) is convex in θ. Finally, since g̃(0 ; c) = 0, (34) coupled with its convexity implies that

φ(c) := infθ≥0 g̃(θ ; c) < 0. In view of this, (33) results in

P(d† ≥ 2νd) ≤ exp(−φ(c)
K∑

j=1
|Ij|)→ 0 as n→∞, (35)

where the limiting assertion is due to
∑K

j=1 |Ij| ≥ c
√

n. Finally, (31) and (35) jointly indicates that

PAn,Bn,En,Fn(d̃ ≤ 4νd)→ 1, as n→∞. (36)
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Subsequently, we choose ρ = (8ν)−1. In conclusion to this step, (30) along with (32) establishes

PAn,Bn,En,Fn(Gn)→ 1 as n→∞, Gn := {τd ≤ d̃ ≤ 4νd}.

Step 4. Localization of watermarked intervals.

In this step, we establish the validity of our localized estimates Îj . In Step 3, we argued that

PAn,Bn,En(Ij ⊆ Dj ⊆ D†
j for each j ∈ [K])→ 1 as n→∞.

Call the above event as F̃n. Under F̃n, it is immediate that

Îj(d̃) = arg min
s∈Lj ,t∈Rj

∑
k∈Dj\[s,t]

(Xk − µ0 − ρd̃) = arg min
s∈Lj ,t∈Rj

∑
k∈D†

j \[s,t]

(Xk − µ0 − ρd̃),

since the operator
∑

k∈D†
j \[s,t] can be decomposed into

∑
k∈Dj\[s,t] +∑

k∈D†
j \Dj

.

We proceed towards applying Theorem 3.1 to Îj(d̃). However, note that d̃ is a random quantity, so

special care must be accorded to its treatment. To that end, define

Îj(σ) = arg min
s∈Lj ,t∈Rj

∑
k∈D†

j \[s,t]

(Xk − µ0 − ρσ), σ ∈ [τd, 4νd].

Fix j ∈ [K]. For M > 0, let DM := {I : |I∆Ij| > M}. For a candidate interval I = [s, t], let

ṼI(σ) =
∑

k∈D†
j \[s,t]

(Xk − µ0 − ρσ).

Clearly, by definition of Gn,

PAn,Bn,En,F̃n,Gn
(|Îj(d̃) ∆ In| > M)
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≤ PAn,Bn,En,F̃n,Gn

(
sup

σ∈[τd,4νd]
|Îj(σ) ∆ In| > M

)

≤ PAn,Bn,En,F̃n,Gn

(
There exists σ ∈ [τd, 4νd] such that inf

s∈Lj ,t∈Rj ,I∈DM

ṼI(σ) < ṼIj
(σ)

)

≤ PAn,Bn,En,F̃n,Gn

(
There exists σ ∈ [τd, 4νd] such that inf

I∈DM

ṼI(σ) < ṼIj
(σ)

)
≤ PAn,Bn,En,F̃n,Gn

(
max

I:x1+x3>M

Sε
1 − Sε

3
x1 + x3

> (1
2 ∧

τ

8ν
)d
)

(37)

≤ PAn,Bn,En,F̃n,Gn

(
max

I:x1+x3>M

Sε
1 − Sε

3
x1 + x3

>
τ

8ν
d
)

(38)

≤ P( max
I:x1+x3>M

Sε
1 − Sε

3
x1 + x3

>
τ

8ν
d). (39)

Here, (37) follows by recalling the notations in the proof of Theorem 3.1 and following the arguments

(9)-(10) after observing σ ∈ [τd, 4νd] implies d− (8ν)−1σ ≥ d
2 . Moreover, (38) also follows from

4νd ≥ σ ≥ τd. Finally, (39) is derived from P(A ∩ B) ≤ P(A); in particular, arguments of

Theorem 3.1 can be followed verbatim to obtain that

P( max
I:x1+x3>M

Sε
1 − Sε

3
x1 + x3

>
τ

8ν
d) ≤ ξM for some ξ < 1.

Note that in the above assertion we have used the fact that d ≥ c to decouple ξ from d. Given

arbitrary ε > 0, Mε can be chosen to ensure ξMε < ε, and through κ, this choice of Mε solely

depends on the constants ν, τ , c, and µ0, apart from the quantity ε. Therefore, in view of the number

of watermarked intervals K = O(1), we obtain that there exists Mε independent of n, K and d such

that

PAn,Bn,En,F̃n,Gn
(|Îj(d̃) ∆ In| > Mε for j ∈ [K]) ≤ ε

=⇒ lim inf
n→∞

PAn,Bn,En,F̃n,Gn
(|Îj(d̃) ∆ In| ≤Mε for j ∈ [K]) ≥ 1− ε, (40)
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where in (40) we invoke

lim
n→∞

P(An ∩Bn ∩ En ∩ F̃n ∩Gn) = 1.

Recalling that En = {K̂ = K} completes the proof.

D.3 Additional propositions

Firstly we provide a formal proof that the pivot statistics corresponding to un-watermarked tokens

are i.i.d., a fundamental fact behind the construction and validity of our algorithm.

Proof of Lemma 2.2. Let t ∈ S. Since ωt and ζt are independent conditional on ω1:(t−1), hence

L(Yt)|ω1:t
d= L(Y ). Hence, {Yt}t∈S are identically distributed since given ω1:t, the distribution

of Yt is solely a function of the key ζt that are i.i.d.. Moreover, for s < t ∈ S, even if there is a

watermarked region Ik ⊂ (s, t), ζs and ωl are independent for all l ∈ (s, t]. In view of the fact that

conditional on ω1:s, Ys and Yt are completely determined by ζs and (ws+1:t, ζs+1:t) respectively, we

deduce that Ys and Yt are independent conditional on ω1:s. Hence, for two Borel sets A and B,

P(Ys ∈ A, Yt ∈ B) =E[P(Ys ∈ A|ω1:s)E[P(Yt ∈ B|ω1:t)|ω1:s]]

=P(Ys ∈ A)P(Yt ∈ B) (from Definition 2.1).

This completes the proof.

Next, we collect the additional results that we have used in our theoretical arguments. The proofs

are provided subsequently.

Proposition 1. Let h(x) = − log(1− x), and suppose P∆ := {maxw∈W Pw ≤ 1−∆} for some
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fixed ∆ > 0. Then it follows that

inf
P ∈P∆

E1,P [h(Y )] ≥
∞∑

n=1

( 1
n
− ⌊ 1

1−∆⌋
(1−∆)2

1 + n(1−∆) −
1− (1−∆)⌊ 1

1−∆⌋
1 + n(1− (1−∆)⌊ 1

1−∆⌋)

)
. (41)

Proposition 2. Consider d̃ and Ψ(·) from Theorem D.1. If there exists a constant c > 0 such that

d ≥ c, then

(sup
θ≥0
{θρd̃−Ψ(θ)})−1 = O((ρd̃)−1). (42)

Recall ε from Theorem 3.1. Suppose we additionally have that

max{E0[exp(r|ε|)], sup
P ∈P

E1,P [exp(r|ε|)]} ≤ exp(r2/2) for all r ∈ [0, η],

η being the same as in Theorem 3.1. Then, choosing ρ > 0 such that ρd̃ < 5
2η, it holds that

(sup
θ≥0
{θρd̃−Ψ(θ)})−1 = O((ρd̃)−2). (43)

Proposition 3. Let E0[|X − µ0|p] < ∞ for some δ > 0. Let Q, b be selected as in Theorem 4.1.

Then it follows that Q/b→ µ0 as n→∞.

Proposition 4. Let Xi be i.i.d. with mean µ0, and let Bk and Sk be defined as in Steps 2 and 3 of

WISER in Figure 2. Then it follows that

P0

⌈n/b⌉∑
k=1

I{Sk > Q} ≥ C0

√
log n

→ 0, as n→∞,

where Q is defined as in Theorem 4.1.
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Proof of Proposition 1. From Lemma 3.1 of Li, Ruan, Wang, Long & Su (2025b), it follows

E1,P [h(X)] =
|W|∑
w=1

∫ 1

0
x1/Pw−1

(
− log(1− x)

)
dx

=
|W|∑
w=1

∞∑
n=1

∫ 1

0

x1/Pw−1+n

n
dx

=
|W|∑
w=1

∞∑
n=0

1
n(n + 1/Pw)

=
∞∑

n=1
( 1
n
−

|W|∑
w=1

Pw

n + 1/Pw

)

≥
∞∑

n=1

(
1
n
− ⌊ 1

1−∆⌋
(1−∆)2

1 + n(1−∆) −
1− (1−∆)⌊ 1

1−∆⌋
1 + n(1− (1−∆)⌊ 1

1−∆⌋)

)
, (44)

where the final inequality follows from noting the convexity of g : x 7→ ∑d
i=1

xi

n+1/xi
,
∑d

i=1 xi = 1,

and noting that the optimum value of g on the set P∆ occurs at the extrema defined by

P ⋆
∆ =

(
1−∆, . . . , 1−∆︸ ︷︷ ︸

⌊ 1
1−∆ ⌋ times

, 1− (1−∆) · ⌊ 1
1−∆⌋, 0, . . .

)
.

Proof of Proposition 2. Denote Λ(x) := supθ≥0{θρx − Ψ(θ)}. Note that, an argument same as

(18) shows that Ψ′
+(0) = 0, where Ψ′

+(·) denote the right derivative. Therefore, in light of d ≥ c

for some constant c > 0, there exist θ0 > 0 such that |Ψ(θ)|
θ
≤ ρd̃

2 for all θ ∈ (0, θ0). Therefore,

Λ(d̃) ≥ 2−1θ0ρd̃− 4−1θ0ρc ≥ 4−1θ0ρd̃,

which immediately implies (42). Moving on, we work with the additional assumption that
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supP ∈P E1,P [exp(r|ε|)] ≤ exp(r2/2). This immediately implies that for all θ ∈ [0, η
2 ],

max{log sup
P

E1,P [exp(2θε)], log sup
P

E1,P [exp(−2θε)]} ≤ 2θ2.

Therefore, for all θ ∈ [0, η
2 ] it must hold that

Ψ(θ) ≤ 5
2θ2.

Consequently, in light of ρd̃ < 5
2η, one obtains,

Λ(x) ≥ sup
θ∈[0, η

2 ]
{θρx− 5

2θ2} = ρ2x2

10 ,

which establishes (43).

Proof of Proposition 3. Our proof has two key steps: firstly, we will prove that if there is no

watermarking in the entire sequence, then

max
1≤k≤⌈n/b⌉

Sk

b
P→ µ0. (45)

Subsequently, we follow an argument similar to the proof of equation (29) in Li, Ruan, Wang, Long

& Su (2025b), with crucial tweaks to accommodate the maximum over the block means. Let us first

work towards (45). We note that a similar result (for the p-th moments) appears in Proposition E.2

in Deb et al. (2020) but without proof. For the sake of completion, we provide an independent proof

of (45) without invoking the aforementioned result. Fix ε > 0. Note that

P0( max
1≤k≤⌈n/b⌉

b−1(Sk − µ0) > ε) ≤ n

b
P(b−1(S1 − µ0) > ε), (46)
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where for the last inequality we use that Sk’s are i.i.d. under H0, i.e. no watermarking. Moving on,

we apply the Fuk-Nagaev inequality (Corollary 4, Fuk & Nagaev (1971)),

P0(b−1(S1 − µ0) > ε) ≤ c1
b

(bε)p
E0[|X − µ|p] + exp(−c2

bε2

σ2 ), σ2 := E0[X2], (47)

where c1, c2 > 0 are constants depending solely on p. Note that bp ≲ n, and hence n
(bε)p → 0 as

n → ∞. On the other hand, nb−1 exp(−c2,δ
bε2

σ2 ) → 0 as n → ∞. Therefore, from (46) and (47),

one obtains (45).

Now suppose that lim supn→∞Q/b > µ0. Then there exists γ > 0 and a strictly increasing sequence

{nk} ⊆ N such that Qnk
/bnk

> µ0 + γ for all sufficiently large k ∈ N. Since (45) implies that

max
1≤l≤⌈nk/bnk

⌉

Snk

bnk

P→ µ0, as k →∞,

therefore, there exists a strictly increasing sub-sequence {nkr} ⊆ {nk} such that

max
1≤l≤⌈nkr /bnkr

⌉

Snkr

bnkr

a.s.→ µ0, as r →∞, and Qnkr
/bnkr

> µ0 + γ for all sufficiently large r.

Therefore, by the dominated convergence theorem,

α = lim
r→∞

P
(

max
1≤l≤⌈nkr /bnkr

⌉

Snkr

bnkr

>
Qnkr

bnkr

)
≤ lim

r→∞
P
(

max
1≤l≤⌈nkr /bnkr

⌉

Snkr

bnkr

> µ0 + γ

)

= P(µ0 > µ0 + γ) = 0, (48)

which is a contradiction. Hence, lim supn→∞Q/b ≤ µ0. Very similarly one can show

lim infn→∞Q/b ≥ µ0, which completes the proof.
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Proof of Proposition 4. Let pn = P0(Sk > Q). Clearly, by definition of Q it follows that

α = P0(max
k

Sk > Q) = 1− (1− pn)⌈n/b⌉ ≥ 1− exp(−c
√

npn),

which implies that
√

npn = O(1). Note that
∑⌈n/b⌉

k=1 I{Sk > Q} ∼ Bin(⌈n/b⌉, pn). Therefore,

using Chernoff bound, one obtains

P0(
⌈n/b⌉∑
k=1

I{Sk > Q} ≥ C0

√
log n) ≤ exp(−2−1(1 + o(1))(log log n) log n)→ 0,

which completes the proof.
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